Cho A = 32013 - 112012
B = 21993 + 471
CMR; A,B la cac so chan
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1994 chữ số
k mik nha!
Shingeki_Ogaeshi_Senki
3682-y=621
y=3682-621
y=3061
733+x=8310
x=8310-733
x=7577
862-y=32
y=862-32
y=830
391+x=21993
x=21993-391
x=21602
^_^ tk mình nha
mik đăng câu trả lời cho bn rồi nè tk cho mik đi nhanh lên
a) 120 chia hết cho a
300 chia hết cho a
420 chia hết cho a
=> a \(\in\)ƯC(120,300.420)
Ta có:
120 = 23.3.5
300 = 22.3.52
420 = 22.3.5.7
UCLN(120,300,420) = 22.3.5 = 60
UC(120,300,420) = Ư(60) = {1;2;3;4;5;6;10;12;15;20;30;60}
Vì a > 20 nên a = {30;60}
b) 56 chia hết cho a
560 chia hết cho a
5600 chia hết cho a
=>a \(\in\)ƯC(56,560,5600)
Ta có:
56 = 23.7
560 = 24.5.7
5600 = 25.52.7
UCLN(56,560,5600) = 23.7 = 56
UC(56,560,5600) = Ư(56) = {1;2;4;7;8;14;28;56}
Vì a lớn nhất nên a = 56
Nếu chia hết cho 2 và 5, không chia hết cho 9 thì chỉ có 0 thôi, nhưng nếu mà chia hết cho cả 3 thì đề sai r đó
A = 200*
Mà A chia hết cho 2 và 5, các số chia hết cho 2 và 5 thì có chữ số tận cùng là 0
NHƯNG nếu dấu sao là 0 thì có số 2000, mà 2000 ko chia hết cho 3.
Như vậy, đề sai.
Ta có: \(\hept{\begin{cases}3\equiv1\left(mod2\right)\\11\equiv1\left(mod2\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}3^{2013}\equiv1\left(mod2\right)\\11^{2012}\equiv1\left(mod2\right)\end{cases}}\)
\(\Rightarrow A=3^{2013}-11^{2012}\equiv1-1\equiv0\left(mod2\right)\)
=> A chẵn
Mà \(2^{1993}\) và \(4^{71}\) đều chẵn
=> \(2^{1993}+4^{71}\) chẵn