so sánh
A=1.2/2.2.2.3/3.3.3.4/4.4.4.5/5.5. .......... . 2020.2021/2021.2021
với
B=2020.2021-2020.2020/2020.2019+2020.2
Gấppppppppppppppp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2019\cdot2020}+\dfrac{1}{2020\cdot2021}\)
\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2019}-\dfrac{1}{2020}+\dfrac{1}{2020}-\dfrac{1}{2021}\)
\(=\dfrac{1}{1}-\dfrac{1}{2021}=\dfrac{2021}{2021}-\dfrac{1}{2021}\)
\(=\dfrac{2020}{2021}\)
mà \(\dfrac{2020}{2021}< \dfrac{2021}{2021}=1\)
nên A<1
Giải:
Ta có:
2019.2020-1/2019.2020= 2019.2020/2019.2020 - 1/2019.2020
=1-1/2019.2020
Tương tự:
2020.2021-1/2020.2021= 1-1/2020.2021
Vì 1/2019.2020 > 1/2020.2021 nên -1/2019.2020 < -1/2020.2021
(vì là số nguyên âm)
⇒ 1-1/2019.2020 < 1-1/2020.2021
⇔ 2019.2020-1/2019.2020 < 2020.2021-1/2020.2021
Chúc bạn học tốt!
A = 9/1.2 + 9/2.3 + 9/3.4 + .. + 9/98.99 + 9/99.100
= 1 - 9/100
= 100/100 - 9/100
= 91/100
S=1/2x3+1/4x5+1/6x7+...+1/2022x2023<1/2x3+1/3x4+1/4x5+...+1/1010x1011
=1/2-1/1011=1009/2022<1011/2023
=>S<1011/2023
S= 1/2.3 + 1/4.5 + 1/6.7 +.....+ 1 2020.2021 + 1 2022.2023 . : So sánh S và 1011/2023
Ta có: \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2020\cdot2021}+\dfrac{1}{2021\cdot2022}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2020}-\dfrac{1}{2021}+\dfrac{1}{2021}-\dfrac{1}{2022}\)
\(=1-\dfrac{1}{2022}=\dfrac{2021}{2022}\)
1/1x2+1/2x3+1/3x4+...+1/2020x2021+1/2021x2022
=1/1-1/2+1/2-1/3+1/3-1/4+...+1/2020-1/2021+1/2021-1/2022.
=1/1-1/2022
=2021/2022
\(A=\frac{1.2}{2.2}\cdot\frac{2.3}{3.3}\cdot\frac{3.4}{4.4}\cdot...\cdot\frac{2020.2021}{2021.2021}\)
\(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2020}{2021}\)
\(A=\frac{1.2.3.....2020}{2.3.4.....2021}\)
\(A=\frac{1}{2021}\)
\(B=\frac{2020.2021-2020.2020}{2020.2019+2020.2}\)
\(B=\frac{2020.\left(2021-2020\right)}{2020.\left(2019+2\right)}\)
\(B=\frac{1}{2021}\)
Từ đó ta thấy 2 biểu thức bằng nhau