cho A =3+3 mũ 2+3 mũ 3+3 mũ 4+..........+3 mũ 100
a tính A
b chững minh A chia hết cho 40
c tìm chữ số tận cùng của A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)
B=5+52+...+596
Do 5 mũ bao niêu tận cùng là 5
=>tận cùng của B là chữ số tận cùng của tổng các chữ số tận cùng của các số hạng của B
Số số hạng của B là:96-1+1=96(số hạng)
=>Tổng các chữ số tận cùng của các số hạng của B là:5x96=480
=>chữ số tận cùng của B là 0
Vậy chữ số tận cùng của B là 0
\(a,3A=3^2+3^3+...+3^{101}\\ \Rightarrow3A-A=3^2+3^3+...+3^{101}-3-3^2-...-3^{100}\\ \Rightarrow2A=3^{101}-3\\ \Rightarrow A=\dfrac{3^{101}-3}{2}\)
\(b,A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\\ A=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{99}\left(1+3\right)\\ A=\left(1+3\right)\left(3+3^3+...+3^{99}\right)\\ A=4\left(3+3^3+...+3^{99}\right)⋮4\)
\(A=3+\left(3^2+3^3+...+3^{100}\right)\\ A=3+3^2\left(1+3+...+3^{100}\right)\\ A=3+9\left(1+3+...+3^{100}\right).chia.9.dư.3\\ \Rightarrow A⋮̸9\)
a) rút gọn a
a = 3 + 3^3 + 3^2 + .. + 3^100
3a = 3^2 + 3^3 + .. + 3^101
3a - a = (3^2 + 3^3 + .. + 3^101) - (3 + 3^2 + .. + 3^100)
2a = 3^301 - 3
a = 3^101 - 3/2
b) chứng minh a chia hết cho 4 và k chia hết cho 9
a = 3 + 3^2 + .. + 3^100
a = (3 + 3^2) + .. + (3^99 + 3^100)
a = 3 (1 + 3) + .. + 3^99 (1 + 3)
a = 3.4 + .. + 3^99.4
a = (3 + .. + 3^99).4 ⋮ 4
vì 9 ⋮̸4
=> a ⋮̸9
a,Tổng trên có 96 số hạng, nhóm 4 số thành 1 nhóm ta được 24 nhóm
S = 5 + 52 + 53 +.....+ 596
S = (5+52+53+54)+(55+56+57+58)+.....+(593+594+595+596)
S = 5(1+5+52+53)+55(1+5+52+53)+....+593(1+5+52+53)
S = 5.156 + 55.156 +.....+ 593.156
S = 156.(5+55+....+593) chia hết cho 26 (vì 156 chia hết cho 26)
Ta có: 5+55+.....+593 có 24 số hạng có tận cùng là 5
(vì 5 nhân lên lũy thừa bao nhiêu cũng cho 1 số có tận cùng là 5)
=> 5+55+...+593 có tận cùng là (...5) + (...5) +......+ (...5) gồm 24 số
=> 5+55+...+593 có tận cùng là 5.24 = ...0
=> S = 156.(5+55+...+593)
=> S = 156.(...0)
=> S = (...0)
=> Chữ số tận cùng của S là 0
Bài 1:
a,\(A=3+3^2+3^3+...+3^{2010}\)
\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{2007}+3^{2008}+3^{2009}+3^{2010}\right)\)
\(=3\left(1+3+3^2+3^3\right)+....+3^{2007}\left(1+3+3^2+3^3\right)\)
\(=3.40+...+3^{2007}.40\)
\(=40\left(3+3^5+...+3^{2007}\right)⋮40\)
Vì A chia hết cho 40 nên chữ số tận cùng của A là 0
b,\(A=3+3^2+3^3+...+3^{2010}\)
\(3A=3^2+3^3+...+3^{2011}\)
\(3A-A=\left(3^2+3^3+...+3^{2011}\right)-\left(3+3^2+3^3+...+3^{2010}\right)\)
\(2A=3^{2011}-3\)
\(2A+3=3^{2011}\)
Vậy 2A+3 là 1 lũy thừa của 3
\(1+3+3^2+3^3+...+3^{11}\)
\(=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{10}+3^{11}\right)\)
\(=\left(1+3\right)+3^2\left(1+3\right)+...+3^{10}\left(1+3\right)\)
\(=4\left(1+3^2+...+3^{10}\right)⋮4\)
minh chi lam duoc phan b thoi thong cam nhe
co cac so luy thua cua 5 deu co tan cung la 5
=> cu 2 so cong lai bang mot so duoi 0
=> S co chan luy thua => S co tan cung la 0
Bài 1:
\(S=1+3^2+3^4+...+3^{2020}\)
\(=1+\left(3^2+3^4\right)+\left(3^6+3^8\right)+...+\left(3^{2018}+3^{2020}\right)\)
\(=1+3^2\left(1+3^2\right)+3^6\left(1+3^2\right)+...+3^{2018}\left(1+3^2\right)\)
\(=1+10\left(3^2+3^6+...+3^{2018}\right)\)
Suy ra \(S\)có chữ số tận cùng là chữ số \(1\).
Bài 2:
\(A=2+2^2+2^3+...+2^{2016}\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2014}+2^{2015}+2^{2016}\right)\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2014}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{2014}\right)⋮7\)
các bạn thông cảm mk cần gấp quá nhé ai đúng nhất nhanh nhất mk k cho nhe !
A = 3 + 32 + 33 + ... + 3100
a) 3A = 3( 3 + 32 + 33 + ... + 3100 )
= 32 + 33 + ... + 3101
=> 3A - A = 2A
= 32 + 33 + ... + 3101 - ( 3 + 32 + 33 + ... + 3100 )
= 32 + 33 + ... + 3101 - 3 - 32 - 33 - ... - 3100
= 3101 - 3
=> A = \(\frac{3^{101}-3}{2}\)
b) A = 3 + 32 + 33 + ... + 3100
= ( 3 + 32 + 33 + 34 ) + ( 35 + 36 + 37 + 38 ) + ... + ( 397 + 398 + 399 + 3100 )
= 3( 1 + 3 + 32 + 33 ) + 35( 1 + 3 + 32 + 33 ) + ... + 397( 1 + 3 + 32 + 33 )
= 3.40 + 35.40 + ... 397.40
= 40( 3 + 35 + ... + 397 ) chia hết cho 40
c) Từ ý b) ta có thể suy ra được là A chia hết cho 10 ( vì 40 chia hết cho 10 )
=> A có tận cùng là 0