(x+3)(y+4)=3xy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x+2y+3xy\left(x+y\right)+5\left(x^3y^2+x^2y^3\right)+4=2\left(x+y\right)+3xy\left(x+y\right)+5x^2y^2\left(x+y\right)+4=2.0+3xy.0+5x^2y^2.0+4=4\)
\(2x+2y+3xy\left(x+y\right)+5\left(x^3y^2+x^2y^3\right)+4\)
\(=2\left(x+y\right)+3xy\left(x+y\right)+5\left(xy\right)^2\cdot\left(x+y\right)+4\)
=4
Bài 2:
a: \(3\left(x-1\right)\left(x^2+x+1\right)+\left(x-1\right)^3-4x\left(x+1\right)\left(x-1\right)\)
\(=3\left(x^3-1\right)+x^3-3x^2+3x-1-4x\left(x^2-1\right)\)
\(=3x^3-3+x^3-3x^2+3x-1-4x^3+4x\)
\(=-3x^2+7x-4\)
\(=-3\cdot\left(-1\right)^2+7\cdot\left(-1\right)-4\)
=-3-4-7=-14
b: \(=27x^3y^3-8-3xy\left(9x^2y^2+6xy+1\right)\)
\(=27x^3y^3-8-27x^3y^3-18x^2y^2-3xy\)
\(=-18x^2y^2-3xy-8\)
\(=-18\cdot\left[\left(-2010\right)\cdot\left(-\dfrac{1}{2010}\right)\right]^2-3\cdot\left(-2010\right)\cdot\dfrac{-1}{2010}-8\)
\(=-18-3-8=-29\)
a) Ta có: \(\frac{4}{x+2}+\frac{3}{x-2}+\frac{5x+2}{4-x^2}\)
\(=\frac{4\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{5x+2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{4x-8+3x+6-5x-2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{2x-4}{\left(x-2\right)\left(x+2\right)}=\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{2}{x+2}\)
b) \(\frac{1}{x-y}+\frac{3xy}{y^3-x^3}+\frac{x-y}{x^2+xy+y^2}\)
\(=\frac{x^2+xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\frac{3xy}{\left(x-y\right)\left(x^2+xy+y^1\right)}+\frac{\left(x-y\right)\left(x-y\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\frac{x^2+xy+y^2-3xy+x^2-2xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\frac{2x^2-4xy+2y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\frac{2\left(x^2-2xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\frac{2\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\frac{2\left(x-y\right)}{x^2+xy+y^2}=\frac{2x-2y}{x^2+xy+y^2}\)
a. Có \(x+y=2\Rightarrow x^2+2xy+y^2=4\Rightarrow x^2+y^2=4-2.\left(-3\right)=10\)
\(x^4+y^4=\left(x^2\right)^2+\left(y^2\right)^2=\left(x^2+y^2\right)^2-2x^2y^2\)
\(=10^2-2.\left(-3\right)^2=82\)
b. Ta có \(x+y=1\Rightarrow x^2+y^2=1-2xy\)
\(x^3+y^3+3xy=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)
\(=1.\left(1-2xy-xy\right)+3xy=1\)
Các câu còn lại tương tự
1)a)x+y=60
<=>(x+y)^2=3600
<=>x^2+2xy+y^2=3600(1)
mà xy=35 nên 2xy=2.35=70
(1)<=>x^2+70+y^2=3600
<=>x^2+y^2=3530
<=>(x^2+y^2)^2=12460900
<=>x^4+2x^2.y^2+y^4=12460900(2)
mà xy=35 nên 2x.x.y.y=2450
(2)<=>x^4+y^4=123458450
b)x+y=1
<=>(x+y)^3=1
<=>x^3+3x^2y+3xy^2+y^3=1
<=>x^3+y^3+3xy(x+y)=1
<=>x^3+y^3+3xy=1
=>M=1
x+y=1
<=>x^2+2xy+y^2=1(1)
B=x^3+y^3+3xy(x^2+y^2)+3xy(2xy)
=x^3+y^3+3xy(x^2+2xy+y^2)
=M.1=1(từ(1)
c)
x-y=1
<=>(x-y)^3=1
<=>x^3-3x^2y+3xy^2-y^3=1
<=>x^3-y^3-3xy(x-y)=1
<=>x^3-y^3-3xy=1
=>N=1
a: \(x^2+y^2=\left(x+y\right)^2-2xy=4-2\cdot\left(-3\right)=10\)
\(x^4+y^4=\left(x^2+y^2\right)^2-2\left(xy\right)^2=100-2\cdot\left(-3\right)^2=100-2\cdot9=82\)
b: \(x^3+y^3+3xy\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\)
=1-3xy+3xy=1
d: \(A=\left(x+y\right)^2-4\left(x+y\right)+1=9-4\cdot3+1=10-12=-2\)
Đề bài??
đề bải là j bạn quên rồi kìa