Câu 1 :Tính :
\(a,\sqrt{2}.\sqrt{2-\sqrt{3}}.\left(\sqrt{3}+1\right)\)
\(b,\sqrt{2-\sqrt{3}}\left(\sqrt{6}-\sqrt{2}\right)\left(2+\sqrt{3}\right)\)
Giúp em với ạ ^^!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=>x^3=(\sqrt[3]{2\left(\sqrt{3}+1\right)}-\sqrt[3]{2\left(\sqrt{3}-1\right)})^3\)
\(x^3=2\left(\sqrt{3}+1\right)-3.\left[\sqrt[3]{2\left(\sqrt{3}+1\right)}\right]^2.\left[\sqrt[3]{2\left(\sqrt{3}-1\right)}\right]\)
+\(3\left[\sqrt[3]{2\left(\sqrt{3}-1\right)}\right]^2\left[\sqrt[3]{2\left(\sqrt{3}+1\right)}\right]-2\left(\sqrt{3}-1\right)\)
\(x^3=\)
\(4-3\left[\sqrt[3]{2\left(\sqrt{3}+1\right)}\right]\left[\sqrt[3]{2\left(\sqrt{3}-1\right)}\right]\left[\sqrt[3]{2\left(\sqrt{3}+1\right)}-\sqrt[3]{2\left(\sqrt{3}-1\right)}\right]\)
\(x^3=4-3.\left[\sqrt[3]{4\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\right].\)\(x\)
\(x^3=4-3\left[\sqrt[3]{4\left(3-1\right)}\right].x\)
\(x^3=4-3.2x\)
\(x^3=4-6x\)
thay \(x^3=4-6x\) vào A=>\(A=\left(4-6x+6x-5\right)^{2009}=\left(-1\right)^{2009}=-1\)
\(A=2.\left|\left(-3\right)\right|^3+2.\left(-2\right)^2-4\left|\left(-2\right)^3\right|\)
\(=54+8-32=30\)
\(B=\left|\sqrt{2}-2\right|+\left|\sqrt{2}-3\right|=2-\sqrt{2}+3-\sqrt{2}\)
\(=5-2\sqrt{2}\)
\(C=\left|3-\sqrt{3}\right|-\left|1+\sqrt{3}\right|=3-\sqrt{3}-1-\sqrt{3}\)
\(=2-2\sqrt{3}\)
\(D=\left|5+\sqrt{6}\right|-\left|\sqrt{6}-5\right|=5+\sqrt{6}-5+\sqrt{6}\)
\(=2\sqrt{6}\)
\(E=\sqrt{15^2}-\sqrt{5^2}=15-5=10\)
`A=2sqrt{(-3)^6}+2sqrt{(-2)^4}-4sqrt{(-2)^6}=2|(-3)^3|+2|(-2)^2|-4|(-2)^3|=54+8-32=30` $\\$ `B=sqrt{(sqrt2-2)^2}+sqrt{(sqrt2-3)^2}=2-sqrt2+3-sqrt2=5-2sqrt2` $\\$ `C=sqrt{(3-sqrt3)^2}-sqrt{(1+sqrt3)^2}=3-sqrt3-sqrt3-1=2-2sqrt3` $\\$ `D=sqrt{(5+sqrt6)^2}-sqrt{(sqrt6-sqrt5)^2}=5+sqrt6-5+sqrt6=2sqrt6` $\\$ `E=sqrt{17^2-8^2}-sqrt{3^2+4^2}=sqrt{289-64}-sqrt{9+16}=sqrt(225)-sqrt{25}=15-5=10`
Câu 1,2 bạn đã đăng và có lời giải rồi
Câu 3:
\(=\frac{(\sqrt{3})^2+(2\sqrt{5})^2-2.\sqrt{3}.2\sqrt{5}}{\sqrt{2}(\sqrt{3}-2\sqrt{5})}=\frac{(\sqrt{3}-2\sqrt{5})^2}{\sqrt{2}(\sqrt{3}-2\sqrt{5})}=\frac{\sqrt{3}-2\sqrt{5}}{\sqrt{2}}\)
a)
\(\sqrt[3]{(\sqrt{2}+1)(3+2\sqrt{2})}=\sqrt[3]{(\sqrt{2}+1)(2+2\sqrt{2}+1)}\)
\(=\sqrt[3]{(\sqrt{2}+1)(\sqrt{2}+1)^2}=\sqrt[3]{(\sqrt{2}+1)^3}=\sqrt{2}+1\)
b)
\(\sqrt[3]{(4-2\sqrt{3})(\sqrt{3}-1)}=\sqrt[3]{(3-2\sqrt{3}+1)(\sqrt{3}-1)}\)
\(=\sqrt[3]{(\sqrt{3}-1)^2(\sqrt{3}-1)}=\sqrt[3]{(\sqrt{3}-1)^3}=\sqrt{3}-1\)
c)
\((\sqrt[3]{4}+1)^3-(\sqrt[3]{4}-1)^3=[(\sqrt[3]{4}+1-(\sqrt[3]{4}-1)][(\sqrt[3]{4}+1)^2+(\sqrt[3]{4}+1)(\sqrt[3]{4}-1)+(\sqrt[3]{4}-1)^2]\)
\(=2[\sqrt[3]{16}+1+2\sqrt[3]{4}+\sqrt[3]{16}-1+\sqrt[3]{16}+1-2\sqrt[3]{4}]\)
\(=2(3\sqrt[3]{16}+1)\)
d)
\((\sqrt[3]{9}-\sqrt[3]{6}+\sqrt[3]{4})(\sqrt[3]{3}+\sqrt[3]{2})=[(\sqrt[3]{3})^2-\sqrt[3]{3}.\sqrt[3]{2}+(\sqrt[3]{2})^2](\sqrt[3]{3}+\sqrt[3]{2})\)
\(=(\sqrt[3]{3})^3+(\sqrt[3]{2})^3=3+2=5\)
e)
\(E=\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)
Áp dụng công thức $(a+b)^3=a^3+b^3+3ab(a+b)$ ta có:
\(E^3=20+14\sqrt{2}+20-14\sqrt{2}+3\sqrt[3]{(20+14\sqrt{2})(20-14\sqrt{2})}.E\)
\(E^3=40+3\sqrt[3]{20^2-(14\sqrt{2})^2}.E\)
\(E^3=40+3\sqrt[3]{8}.E=40+6E\)
\(\Leftrightarrow E^2(E-4)+4E(E-4)+10(E-4)=0\)
\(\Leftrightarrow (E-4)(E^2+4E+10)=0\)
Dễ thấy $E^2+4E+10=(E+2)^2+6\neq 0$ nên $E-4=0$ hay $E=4$
\(3\sqrt{9a^6}-6a^3=3\left|3a^3\right|-6a^3\)
Xét \(a\ge0\Rightarrow\) biểu thức \(=9a^3-6a^3=3a^3\)
Xét \(a< 0\Rightarrow\) biểu thức \(=-9a^3-6a^3=-15a^3\)
\(\sqrt{\left(x-1\right)^2}+\sqrt{\left(1-3x\right)^2}=\left|x-1\right|+\left|1-3x\right|\)
\(=1-x+3x-1\left(\dfrac{1}{3}< x\le1\right)=2x\)
\(\sqrt{2-\sqrt{3}}\left(\sqrt{6}+\sqrt{2}\right)=\sqrt{2-\sqrt{3}}.\sqrt{2}\left(\sqrt{3}+1\right)=\sqrt{4-2\sqrt{3}}\left(\sqrt{3}+1\right)\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}\left(\sqrt{3}+1\right)=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)=2\)
\(\left(\sqrt{10}+\sqrt{2}\right)\left(6-2\sqrt{5}\right)\sqrt{3+\sqrt{5}}=\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)^2\sqrt{2}.\sqrt{3+\sqrt{5}}\)
\(=\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)^2\sqrt{6+2\sqrt{5}}=\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)^2\sqrt{\left(\sqrt{5}+1\right)^2}\)
\(=\left(\sqrt{5}+1\right)^2\left(\sqrt{5}-1\right)^2=4^2=16\)
\(\sqrt{23-8\sqrt{7}}+\sqrt{8-2\sqrt{7}}=\sqrt{\left(2\sqrt{7}-4\right)^2}+\sqrt{\left(\sqrt{7}-1\right)^2}\)
\(=2\sqrt{7}-4+\sqrt{7}-1=3\sqrt{7}-5\)
\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
\(=\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}\)
\(=\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=\left|\sqrt{x-1}+1\right|+\left|\sqrt{x-1}-1\right|\)
\(=\sqrt{x-1}+1+1-\sqrt{x-1}=2\)
\(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\)
\(=\sqrt{x-4+4\sqrt{x-4}+4}+\sqrt{x-4-4\sqrt{x-4}+4}\)
\(=\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}=\left|\sqrt{x-4}+2\right|+\left|\sqrt{x-4}-2\right|\)
Xét \(x\ge8\Rightarrow\sqrt{x-4}\ge2\Rightarrow\)biểu thức \(=\sqrt{x-4}+2+\sqrt{x-4}-2\)
\(=2\sqrt{x-4}\)
Xét \(x< 8\Rightarrow\sqrt{x-4}< 2\Rightarrow\) biểu thức \(=\sqrt{x-4}+2+2-\sqrt{x-4}=4\)
a,( √6+2)(√3-√2)
<=> ( √2√3+2)(√3-√2)
<=> √2(√3+√2)(√3-√2)
<=> √2( (√3)2-(√2)2) = √2
b, (√3+1)2-2√3+4
<=> (√3)2 +2√3 +1 -2√3+4 =8
c, (1+√2-√3)(√2+√3)
<=>√2+√3+(√2)2+√6-√6-(√3)2
<=> √2+√3-1
d, √3(√2-√3)2-(√3+√2)
<=> √3( 2-2√6+3)-√3-√2
<=> 5√3-2√18-√3-√2
<=> 4√3-√2(√36-1)
<=> 4√3 - 3√2
e, (1+2√3-√2)(1+2√3+√2)
<=> (1+2√3)2-(√2)2
<=> (1+4√3+(2√3)2)-2
<=> 1+4√3+12-2= 11+4√3
g, (1-√3)2(1+2√3)2
<=>(1-2√3+3)(1+4√3+12)
<=>( 4-2√3)(13+4√3)
<=> 52+16√3-26√3-24
<=> -10√3+28
a) \(\sqrt{2}\cdot\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)
\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}\cdot\left(\sqrt{3}+1\right)\)
\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)
\(=3-1=2\)
b) \(\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{6}-\sqrt{2}\right)\left(2+\sqrt{3}\right)\)
\(=\left(\sqrt{2-\sqrt{3}}\cdot\sqrt{2+\sqrt{3}}\right)\cdot\left(\sqrt{2}\cdot\sqrt{2+\sqrt{3}}\right)\cdot\left(\sqrt{3}-1\right)\)
\(=\left(4-3\right)\cdot\sqrt{4+2\sqrt{3}}\cdot\left(\sqrt{3}-1\right)\)
\(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)=3-1=2\)