1/9x^2-1/16
2-x^2
x^2-7
5-x^2
giải giúp mình đang cần
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`2)x^4+2x^3-x^2-2x+1=0`
`<=>x^4+2x^3+x^2-2x^2-2x+1=0`
`<=>(x^2+x)^2-2(x^2+x)+1=0`
`<=>(x^2+x-1)^2=0`
`<=>x^2+x-1=0`
`\Delta=1+4=5`
`=>x_{1,2}=(-1+-sqrt5)/2`
Vậy `S={(-1+sqrt5)/2,(-1+sqrt5)/2`
`3)x^4-4x^3-9x^2+8x+4=0`
`<=>x^4-x^3-3x^3+3x^2-12x^2+12x-4x+4=0`
`<=>(x-1)(x^3-3x^2-12x-4)=0`
`<=>(x-1)(x^3+2x^2-5x^2-10x-2x-4)=0`
`<=>(x-1)(x+2)(x^2-5x-10)=0`
`+)x=1`
`+)x=-2`
`+)x^2-5x-10=0`
`Delta=25+40=65`
`=>x_{12}=(5+sqrt{65})/2`
a: Để A nguyên thì 2 chia hết cho x
=>\(x\in\left\{1;-1;2;-2\right\}\)
b: Để B nguyên thì \(1-x\in\left\{1;-1;3;-3\right\}\)
=>\(x\in\left\{0;2;-2;4\right\}\)
c: C nguyên thì \(2x+7\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{-3;-4;-1;-6\right\}\)
d: D nguyên
=>x+1+1 chia hết cho x+1
=>\(x+1\in\left\{1;-1\right\}\)
=>\(x\in\left\{0;-2\right\}\)
e: E nguyên
=>x-1+5 chia hết cho x-1
=>\(x-1\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{2;0;6;-4\right\}\)
f: G nguyên
=>2x+6 chia hết cho 2x-1
=>2x-1+7 chia hết cho 2x-1
=>\(2x-1\in\left\{1;-1;7;-7\right\}\)
=>\(x\in\left\{1;0;4;-3\right\}\)
h: H nguyên
=>11x+22-37 chia hết cho x+2
=>\(x+2\in\left\{1;-1;37;-37\right\}\)
=>\(x\in\left\{-1;-3;35;-39\right\}\)
\(\left(x^2+x\right)^2-2x^2-2x-15\)
\(=\left(x^2+x\right)^2-\left(2x^2+2x+15\right)\)
\(=\left(x^2+x\right)^2-\left[\left(2x^2+2x\right)+15\right]\)
\(=\left(x^2+x\right)^2-\left[2.\left(x^2+x\right)+15\right]\)
\(=\left(x^2+x\right)^2-2\left(x^2+x\right)-15\) \(\left(1\right)\)
đặt \(x^2+x=t\)
\(\left(1\right)\)\(=\) \(t^2-2t-15\)
\(=\left(t-1\right)^2-16\)
\(=\left(t-1-4\right)\left(t-1+4\right)\)
\(=\left(t-5\right)\left(t+3\right)\)
thay \(t=x^2+x\) ta có
\(\left(1\right)=\left(x^2+x-5\right)\left(x^2+x+3\right)\)
các câu còn lại tương tự nha
học tốt
\(\frac{1}{9}x^2-\frac{1}{16}=\left(\frac{1}{3}x\right)^2-\left(\frac{1}{4}\right)^2=\left(\frac{1}{3}x-\frac{1}{4}\right)\left(\frac{1}{3}x+\frac{1}{4}\right)\)
\(2-x^2=\left(\sqrt{2}\right)^2-x^2=\left(\sqrt{2}-x\right)\left(\sqrt{2}+x\right)\)
\(x^2-7=x^2-\left(\sqrt{7}\right)^2=\left(x-\sqrt{7}\right)\left(x+\sqrt{7}\right)\)
\(5-x^2=\left(\sqrt{5}\right)^2-x^2=\left(\sqrt{5}-x\right)\left(\sqrt{5}+x\right)\)