cho biểu thức
Q=\(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(\left\{{}\begin{matrix}-1\le x\le1\\x\ne0\end{matrix}\right.\)
\(A=\frac{\sqrt{1+x}}{\sqrt{1+x}-\sqrt{1-x}}+\frac{\sqrt{1-x}^2}{\sqrt{1-x}\left(\sqrt{1+x}-\sqrt{1-x}\right)}-\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\)
\(=\frac{\sqrt{1+x}+\sqrt{1-x}}{\sqrt{1+x}-\sqrt{1-x}}-\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\)
\(=\frac{1+x+1-x+2\sqrt{1-x^2}-\left(1+x+1-x-2\sqrt{1-x^2}\right)}{2x}\)
\(=\frac{2\sqrt{1-x^2}}{x}\)
\(\sqrt{1-x^2}=\sqrt{1-\frac{4+2\sqrt{3}}{8}}=\sqrt{\frac{4-2\sqrt{3}}{8}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
\(\Rightarrow A=\frac{\sqrt{3}-1}{\sqrt{2}}.\frac{2\sqrt{2}}{\sqrt{3}+1}=\frac{2\left(\sqrt{3}-1\right)^2}{2}=4-2\sqrt{3}\)
\(A=\left(\dfrac{1}{\sqrt{x-1}}+\dfrac{1}{\sqrt{x-1}}\right)^2\cdot\dfrac{x^2-1}{2}-\sqrt{x^2-1}\) (ĐK: \(x>1\))
\(A=\left(\dfrac{2}{\sqrt{x-1}}\right)^2\cdot\dfrac{x^2-1}{2}-\sqrt{x^2-1}\)
\(A=\dfrac{4}{x-1}\cdot\dfrac{\left(x+1\right)\left(x-1\right)}{2}-\sqrt{x^2-1}\)
\(A=2\left(x+1\right)-\sqrt{\left(x+1\right)\left(x-1\right)}\)
\(A=\sqrt{x+1}\left(2\sqrt{x+1}-\sqrt{x-1}\right)\)
\(A=\left(\dfrac{1}{\sqrt{x-1}}+\dfrac{1}{\sqrt{x+1}}\right)^2\cdot\dfrac{x^2-1}{2}-\sqrt{x^2-1}\\ \Rightarrow A=\left(\dfrac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x^2-1}}\right)^2\cdot\dfrac{x^2-1}{2}-\sqrt{x^2-1}\\ \Rightarrow A=\dfrac{\left(\sqrt{x+1}+\sqrt{x-1}\right)^2}{2}-\sqrt{x^2-1}\\ \Rightarrow A=\dfrac{2x+2\sqrt{x^2-1}-2\sqrt{x^2-1}}{2}\\ \Rightarrow A=x\)
a. ĐK \(x\ge0\)và \(x\ne1\)
A =\(\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}}{\sqrt{x}+1}+\frac{\sqrt{x}}{1-\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{1-\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\frac{\left(\sqrt{x}+1\right)^2+\sqrt{x}\left(\sqrt{x}-1\right)-\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}:\frac{\cdot\left(\sqrt{x}+1\right)^2+\left(\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{x+2\sqrt{x}+1+x-\sqrt{x}-x-\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{x+2\sqrt{x}+1+\sqrt{x}-x-1+\sqrt{x}}\)
\(=\frac{x+1}{4\sqrt{x}}\)
b. Thay \(x=\frac{2-\sqrt{3}}{2}\Rightarrow A=\frac{\frac{2-\sqrt{3}}{2}+1}{4\sqrt{\frac{2-\sqrt{3}}{2}}}=\frac{4-\sqrt{3}}{4\left(\sqrt{3}-1\right)}=\frac{4-\sqrt{3}}{4-4\sqrt{3}}=-\frac{1+3\sqrt{3}}{8}\)
c . Ta có \(A-\frac{1}{2}=\frac{x+1}{4\sqrt{x}}-\frac{1}{2}=\frac{x-2\sqrt{x}+1}{4\sqrt{x}}=\frac{\left(\sqrt{x}-1\right)^2}{4\sqrt{x}}>0\)với \(\forall x>0\)và \(x\ne1\)
Vậy A >1/2
Rút gọn thôi à ._.
\(Q=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}\)
ĐK : \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
\(Q=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{x+\sqrt{x}-2\sqrt{x}+2-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}}{\sqrt{x}+1}\)