K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 10 2020

\(P=\left(x+1\right)\left(x+7\right)\left(x+3\right)\left(x+5\right)+2017\)

\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+2017\)

\(=\left(x^2+8x+7\right)^2+8\left(x^2+8x+7\right)+16+2001\)

\(=\left(x^2+8x+7+4\right)^2+2001\)

\(=\left(x^2+8x+11\right)^2+2001\ge2001\)

\(P_{min}=2001\) khi \(x^2+8x+11=0\)

3 tháng 1 2018

a)ta có:/y-1/>=0 với mọi y

           /y-1/+7>=7 với mọi y

dấu "=" xảy ra khi và chỉ khi:y-1=0=> y=1

vậy MIN của biểu thức là 7 tại y=1

20 tháng 12 2017

giá trj A là 2/9

20 tháng 12 2017

GTLN A = -7 . 

GTNN B = 2/3 . 

k cho mình . 

18 tháng 12 2017

1/ Gọi Bmin là GTNN của B

Ta có \(\left|3x-6\right|\ge0\)=> \(2\left|3x-6\right|\ge0\)với mọi \(x\in R\)

=> \(2\left|3x-6\right|-4\ge0\)với mọi \(x\in R\).

=> Bmin = 0.

Vậy GTNN của B = 0.

2/ Gọi Dmin là GTNN của D.

Ta có \(\left|x-2\right|\ge0\)với mọi \(x\in R\)

và \(\left|x-8\right|\ge0\)với mọi \(x\in R\)

=> \(\left|x-2\right|+\left|x-8\right|\ge0\)với mọi \(x\in R\)

=> Dmin = 0.

=> \(\left|x-2\right|+\left|x-8\right|=0\)

=> \(\hept{\begin{cases}\left|x-2\right|=0\\\left|x-8\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x-2=0\\x-8=0\end{cases}}\)=> \(\hept{\begin{cases}x=2\\x=8\end{cases}}\)(Vô lý! Không thể cùng lúc có 2 giá trị x xảy ra)

Vậy không có x thoả mãn đk khi GTNN của D = 3.