Tam giác ABC có AB = BC; ∠B = 20◦. M và N là các điểm trên AB và BC sao cho ∠MCA = 60◦ và ∠NAC = 50◦. Tính ∠NMC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì AB=AC=BC nên tam giác ABC đều nên góc A= góc B =góc C =60 độ
a: Xét ΔADB và ΔADC có
AD chung
DB=DC
AB=AC
Do đó: ΔADB=ΔADC
b: Ta có: ΔABC cân tại A
mà AD là đường trung tuyến
nên AD là đường cao
Diện tích tam giác ACD là:
18 x 50 : 2 = 450 (cm2)
Độ dài cạnh BC là:
180 - (50 + 50 + 30) = 50 (cm)
Từ A kẻ đường cao AH.
AH có độ dài là:
450 x 2 : 30 = 30 = 30 (cm)
Diện tích tam giác ABC là:
30 x 50 : 2 = 750 (cm2)
Đáp số :...
P/s : Năm mới vui vẻ^^
Diện tích tam giác ACD là;
\(15x50:2=450\left(cm^2\right)\)
Độ dài cạnh BC là:
\(180-\left(50+50+30\right)=50\left(cm\right)\)
Từ A kẻ đường cao AH
Độ dài AH là:
\(450x2:30=30\left(cm\right)\)
Diện tích tam giác ABC là:
30x50:2=750\(\left(cm^2\right)\)
Vậy diện tích tam giác ABC là 750 \(\left(cm^2\right)\)
Vì tam giác ABC vuông cân tại A nên ta có đường cao BA (đáy AC) = 5, đường cao AC (đáy AB) = 5
Kẻ đường cao AH sao cho AH cắt BC tại H.
Do tam giác ABC cân tại A nên AH vừa là đường cao, vừa là phân giác => Góc HAB = Góc HAC
Xét tam giác BAH và tam giác CAH có:
Góc B = Góc C (tam giác ABC cân)
BA = CA
góc HAB = góc HAC
=> tam giác BAH = tam giác CAH (g.c.g)
=> BH = CH = 1/2 BC = 4
Áp dụng định lí Py-ta-go cho tam giác BAH, ta có:
AH2 + BH2 = AB2
AH2 + 16 = 20
Suy ra, AH = 2
Cho các điểm như hình vẽ. Do ABC cân nên BH = HC = 4. Vậy \(\text{AH = }\sqrt{AB ^2-BH^2}=\sqrt{5^2-4^2}=3\)
Ta thấy \(\frac{KC}{BC}=sinABC=\frac{AH}{AB}=\frac{3}{5}\Rightarrow CK=\frac{8.3}{5}=4,8\)
Do tam giác ABC cân tại A nên BI = CK = 4,8.
bạn tự vẽ hình nhé
gọi O là tâm dường tròn nội tiếp tam giác ABC
Vì AB=AC=5cm ==> tam giác ABC cân tại A KẺ đường cao AH ==>AH đồng thời là đường trung tuyến
==>BH=6/2=3cm
áp dụng py ta go tính được AH=4cm
đặt OH=OK=x rồi áp dụng vào 2 tam giác vuông tính là ra
Kẻ đường cao BH (H thuộc AC)
Do góc A nhọn \(\Rightarrow\) H nằm giữa A và C
Ta có: \(S_{ABC}=\dfrac{1}{2}BH.AC\Leftrightarrow\dfrac{2}{5}bc=\dfrac{1}{2}BH.b\)
\(\Rightarrow BH=\dfrac{4c}{5}\)
Áp dụng Pitago cho tam giác vuông ABH:
\(AH^2=AB^2-BH^2=c^2-\left(\dfrac{4c}{5}\right)^2=\dfrac{9c^2}{25}\Rightarrow AH=\dfrac{3c}{5}\)
\(\Rightarrow CH=AC-AH=b-\dfrac{3c}{5}\)
Pitago tam giác vuông BCH:
\(BC=\sqrt{BH^2+CH^2}=\sqrt{\left(\dfrac{4c}{5}\right)^2+\left(b-\dfrac{3c}{5}\right)^2}=\sqrt{b^2-\dfrac{6}{5}bc+c^2}\)