K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2020

mk xin sửa lại đề vì nhìn hơi sai sai

x^2 +x*x^2*(-2*x+1) /(x+1*x + 1*x-1 - x^2 -2*x^2 -x)

3 tháng 10 2020

Oke bạn, bạn cứ tự nhiên đưa ra ý kiến nhé, nếu nó hợp lý thì oke:)

27 tháng 2 2020

ĐKXĐ \(x\ne0;x\ne1;x\ne-1\)

\(A=\frac{\left(x+1+1-x\right)}{\left(1-x^2\right)-\frac{5-x}{1-x^2}}:\frac{\left(1-2x\right)}{x^2-1}\)

\(A=\frac{\left(x-3\right)}{\left(1-x^2\right)}:\frac{\left(1-2x\right)}{\left(x^2-1\right)}\)

\(A=\frac{\left(3-x\right)}{\left(x^2-1\right)}:\frac{\left(1-2x\right)}{\left(x^2-1\right)}\)

\(A=\frac{\left(3x-2\right)}{1-2x}\)

27 tháng 2 2020

\(a,ĐKXĐ:x\ne\pm1;x\ne\frac{1}{2}\)

\(A=\left(\frac{1}{x-1}+\frac{2}{x+1}-\frac{5-x}{1-x^{^2}}\right):\frac{1-2x}{x^2-1}\)

\(=\left(\frac{1}{x-1}+\frac{2}{x+1}+\frac{5-x}{\left(x-1\right)\left(x+1\right)}\right):\frac{1-2x}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x+1+2\left(x-1\right)+5-x}{\left(x-1\right)\left(x+1\right)}:\frac{1-2x}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{2x+4}{\left(x-1\right)\left(x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)}{1-2x}\)

\(=\frac{2x+4}{1-2x}\)

\(b,Vớix\ne\pm1;x\ne\frac{1}{2}\)ta có \(A=\frac{2x+4}{1-2x}=\frac{-1\left(1-2x\right)+5}{1-2x}=-1+\frac{5}{1-2x}\)

Với x thuộc Z để A nguyên thì \(5⋮1-2x\Rightarrow1-2x\inƯ\left\{5\right\}=\left\{\pm1;\pm5\right\}\)

Với 1-2x=1 => x= 0(TMĐKXĐ)

với 1-2x=-1 => x=1(loại)

với 1-2x=5 => x=-2(tmđkxđ)

với 1-2x=-5 => x=3(tmđkxđ)

Vậy với \(x\in\left\{0;-2;-3\right\}\)thì A nguyên

2 tháng 10 2020

\(A=\left(\frac{x^2+x+1}{x}+\frac{x+2}{x}-\frac{2-x}{x}\right)\frac{x}{x+1}=\frac{x^2+3x+1}{x+1}\)

2 tháng 10 2020

Ồ kê may:)) Mình làm đúng rồi, cảm ơn đã check :)) 

2 tháng 10 2020

a) ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne2\\x\ne-4\end{cases}}\)

\(A=\frac{3}{x+4}-\frac{x\left(x-1\right)}{x+4}\times\frac{2x-5}{x\left(x-2\right)\left(x+4\right)}-\frac{17}{\left(x+4\right)^2}\)

\(=\frac{3\left(x+4\right)}{\left(x+4\right)^2}-\frac{x\left(x-1\right)\left(2x-5\right)}{\left(x+4\right)x\left(x-2\right)\left(x+4\right)}-\frac{17}{\left(x+4\right)^2}\)

\(=\frac{3x+12}{\left(x+4\right)^2}-\frac{\left(x-1\right)\left(2x-5\right)}{\left(x+4\right)^2\left(x-2\right)}-\frac{17}{\left(x+4\right)^2}\)

\(=\frac{\left(3x+12\right)\left(x-2\right)}{\left(x+4\right)^2\left(x-2\right)}-\frac{2x^2-7x+5}{\left(x+4\right)^2\left(x-2\right)}-\frac{17\left(x-2\right)}{\left(x+4\right)^2\left(x-2\right)}\)

\(=\frac{3x^2+6x-24-2x^2+7x-5-17x+34}{\left(x+4\right)^2\left(x-2\right)}\)

\(=\frac{x^2-4x+5}{\left(x+4\right)^2\left(x-2\right)}=\frac{x^2-4x+5}{x^3+6x^2-32}\)

b) \(18A=1\)

<=> \(18\times\frac{x^2-4x+5}{x^3+6x^2-32}=1\)( ĐK : \(\hept{\begin{cases}x\ne0\\x\ne2\\x\ne-4\end{cases}}\))

<=> \(\frac{x^2-4x+5}{x^3+6x^2-32}=\frac{1}{18}\)

<=> 18( x2 - 4x + 5 ) = x3 + 6x2 - 32

<=> 18x2 - 72x + 90 = x3 + 6x2 - 32

<=> x3 + 6x2 - 32 - 18x+ 72x - 90 = 0

<=> x3 - 12x2 + 72x - 122 = 0

Rồi đến đây chịu á :) 

2 tháng 10 2020

Ý lộn == là \(\frac{x^2-2x}{x+4}\)ạ ==

24 tháng 6 2017

a) ĐKXĐ: \(x\ne-2;x\ne2\), rút gọn:

\(A=\left[\frac{3\left(x-2\right)-2x\left(x+2\right)+2\left(2x^2+3\right)}{2\left(x-2\right)\left(x+2\right)}\right]\div\frac{2x-1}{4\left(x-2\right)}\)

\(A=\frac{3x-6-2x^2-4x+4x^2+6}{2\left(x-2\right)\left(x+2\right)}\cdot\frac{4\left(x-2\right)}{2x-1}=\frac{4\left(2x^2-x\right)}{x\left(x+2\right)\left(2x-1\right)}=\frac{4x\left(2x-1\right)}{x\left(x+2\right)\left(2x-1\right)}=\frac{4}{x+2}\)

b) Ta có: \(\left|x-1\right|=3\Leftrightarrow\hept{\begin{cases}x-1=3\\x-1=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\left(n\right)\\x=-2\left(l\right)\end{cases}}}\)

=> Khi \(x=4\)thì \(A=\frac{4}{4+2}=\frac{4}{6}=\frac{2}{3}\)

c) \(A< 2\Leftrightarrow\frac{4}{x+2}< 2\Leftrightarrow4< 2x+4\Leftrightarrow0< 2x\Leftrightarrow x>0\)Vậy \(A< 2,\forall x>0\)

d) \(\left|A\right|=1\Leftrightarrow\left|\frac{4}{x+2}\right|=1\Leftrightarrow\hept{\begin{cases}\frac{4}{x+2}=1\\\frac{4}{x+2}=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\left(l\right)\\x=-6\left(n\right)\end{cases}}}\)Vậy \(\left|A\right|=1\)khi và chỉ khi x = -6

10 tháng 8 2021

Bài 1 : Với : \(x>0;x\ne1\)

\(P=\left(1+\frac{1}{\sqrt{x}-1}\right)\frac{1}{x-\sqrt{x}}=\left(\frac{\sqrt{x}}{\sqrt{x}-1}\right).\sqrt{x}\left(\sqrt{x}-1\right)=x\)

Thay vào ta được : \(P=x=25\)

10 tháng 8 2021

Bài 2 : 

a, Với \(x\ge0;x\ne1\)

\(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}=\frac{x+\sqrt{x}-2\sqrt{x}+2-2}{x-1}\)

\(=\frac{x-\sqrt{x}}{x-1}=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}}{\sqrt{x}+1}\)

Thay x = 9 vào A ta được : \(\frac{3}{3+1}=\frac{3}{4}\)

18 tháng 5 2018

Bài 1 : Điều kiện xác định : \(x\ne\pm1\)

\(K=\left(\frac{x+1}{\left(x-1\right)\left(x+1\right)}-\frac{x-1}{\left(x-1\right)\left(x+1\right)}\right).\frac{x^2-1}{x^2}\)

\(K=\frac{2}{\left(x-1\right)\left(x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)}{x^2}=\frac{2}{x^2}\)

Nhận thấy giá trị của x càng tăng thì giá trị của M càng giảm

mặt khác , giá trị của x lại không giảm quá 0 nên ta không thể nào xác định được giá trị lớn nhất của K