Rút gọn các biểu thức sau:
c) (x + 3)(x - 3) - (x + 5)(x - 1) - (x - 4)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
7:
a: =>0,5x-5=2 hoặc 0,5x-5=-2
=>0,5x=3 hoặc 0,5x=7
=>x=6 hoặc x=14
b: |5x-2|=-3
mà |5x-2|>=0
nên ptvn
c: =>1/4x+3=0
=>1/4x=-3
=>x=-12
c) \(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)\)
\(=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x.1+1^2\right)\)
\(=\left(x-1\right)^3-\left(x-1\right)^3\)
\(=0\)
d) \(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2\)
\(=\left(x-3\right)^3-\left(x-3\right)\left(x^2+x.3+3^2\right)+6\left(x+1\right)^2\)
\(=\left(x-3\right)^3-\left(x-3\right)^3+6\left(x+1\right)^2\)
\(=0+6\left(x+1\right)^2\)
\(=6\left(x+1\right)^2\)
`Answer:`
`a)`
`A=5(x+1)^2-3(x-3)^2-4(x^2-4)`
`=>A=5(x^2+2x+1)-3(x^2-6x+9)-4x^2+16`
`=>A=5x^2+10x+5-3x^2+18x-27-4x^2+16`
`=>A=(5x^2-3x^2-4x^2)+(10x+18x)+(5-27+16)`
`=>A=-2x^2+28x-6`
`b)`
`B=5(x+1)^2-3(x-3)^2-4(x+2)(x-2)`
`=2x(3x+5)-3(3x+5)-2x(x^2-4x+4)-[(2x)^2-3^2]`
`=6x^2+10x-9x-15-2x^3+8x^2-8x-4x^2+9`
`=(6x^2-4x^2+8x^2)-2x^3+(10x-9x-8x)+(-15+9)`
Thay `x=-7` vào ta được:
`B=10(-7)^2-2(-7)^3-7(-7)-6`
`=>B=10.49-2(-343)+49-6`
`=>B=490+686+49-6`
`=>B=1219`
Bài 1:
a: \(A=\dfrac{x^2-3+x+3}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x}=\dfrac{x\left(x+1\right)}{x\left(x-3\right)}=\dfrac{x+1}{x-3}\)
b: Để A=3 thì 3x-9=x+1
=>2x=10
hay x=5
Bài 2:
a: \(A=\dfrac{x+x-2-2x-4}{\left(x-2\right)\left(x+2\right)}:\dfrac{x+2-x}{x+2}\)
\(=\dfrac{-6}{x-2}\cdot\dfrac{1}{2}=\dfrac{-3}{x-2}\)
b: Để A nguyên thì \(x-2\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{3;1;5;-1\right\}\)
Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề và hỗ trợ bạn tốt hơn nhé.
1:
a: \(\left(2x-5\right)^2-4x\left(x+3\right)\)
\(=4x^2-20x+25-4x^2-12x\)
=-32x+25
b: \(\left(x-2\right)^3-6\left(x+4\right)\left(x-4\right)-\left(x-2\right)\left(x^2+2x+4\right)\)
\(=x^3-6x^2+12x-8-\left(x^3-8\right)-6\left(x^2-16\right)\)
\(=-6x^2+12x-6x^2+96=-12x^2+12x+96\)
c: \(\left(x-1\right)^2-2\left(x-1\right)\left(x+2\right)+\left(x+2\right)^2+5\left(2x-3\right)\)
\(=\left(x-1-x-2\right)^2+5\left(2x-3\right)\)
\(=\left(-3\right)^2+5\left(2x-3\right)\)
\(=9+10x-15=10x-6\)
2:
a: \(\left(2-3x\right)^2-5x\left(x-4\right)+4\left(x-1\right)\)
\(=9x^2-12x+4-5x^2+20x+4x-4\)
\(=4x^2+12x\)
b: \(\left(3-x\right)\left(x^2+3x+9\right)+\left(x-3\right)^3\)
\(=27-x^3+x^3-9x^2+27x-27\)
\(=-9x^2+27x\)
c: \(\left(x-4\right)^2\left(x+4\right)-\left(x-4\right)\left(x+4\right)^2+3\left(x^2-16\right)\)
\(=\left(x-4\right)\left(x+4\right)\left(x-4-x-4\right)+3\left(x^2-16\right)\)
\(=\left(x^2-16\right)\left(-8\right)+3\left(x^2-16\right)\)
\(=-5\left(x^2-16\right)=-5x^2+80\)
1) \(\left(x+1\right)^3-\left(x-4\right)\left(x+4\right)-x^3\)
\(=\left(x^3+3x^2+3x+1\right)-\left(x^2-16\right)-x^3\)
\(=x^3+3x^2+3x+1-x^2+16-x^3\)
\(=2x^2+3x+17\)
2) \(\left(x+2\right)^3-x\left(x+3\right)\left(x-3\right)-12x^2-8\)
\(=\left(x^3+6x^2+12x+8\right)-x\left(x^2-9\right)-12x^2-8\)
\(=x^3+6x^2+12x+8-x^3+9x-12x^2-8\)
\(=-6x^2+21x\)
`@` `\text {Ans}`
`\downarrow`
`1.`
\((x + 1) ^ 3 - (x - 4)(x + 4) - x ^ 3\)
`= x^3 + 3x^2 + 3x + 1 - [ x(x+4) - 4(x+4)] - x^3`
`= x^3 + 3x^2 + 3x + 1 - (x^2 + 4x - 4x - 16) - x^3`
`= x^3 + 3x^2 + 3x + 1 - (x^2 - 16) - x^3`
`= x^3 + 3x^2 + 3x + 1 - x^2 + 16 - x^3`
`= (x^3 - x^3) + (3x^2 - x^2) + 3x + (1+16)`
`= 2x^2 + 3x + 17`
`2.`
\((x + 2) ^ 3 - x(x + 3)(x - 3) - 12x ^ 2 - 8\)
`= x^3 + 6x^2 + 12x + 8 - [ (x^2 + 3x)(x-3)] - 12x^2 - 8`
`= x^3 + 6x^2 + 12x + 8 - (x^3 - 9x) - 12x^2 - 8`
`= x^3 + 6x^2 + 12x +8 - x^3 + 9x - 12x^2 - 8`
`= (x^3 - x^3) + (6x^2 - 12x^2) + (12x + 9x) + (8-8)`
`= -6x^2 + 21x `
`a)(2x-1)^2+(x+3)^2-5(x-7)(x+7)`
`=4x^2-4x+1+x^2+6x+9-5(x^2-49)`
`=5x^2-5x^2-4x+6x+1+9+245`
`=2x+255`
`b)(x-2)(x^2+2x+4)-(25+x^3)`
`=x^3-8-x^3-25=-33`
Lời giải:
a.
$(2x-1)^2+(x+3)^2-5(x-7)(x+7)$
$=4x^2-4x+1+(x^2+6x+9)-5(x^2-49)$
$=5x^2+2x+10-(5x^2-245)=2x+255$
b.
$(x-2)(x^2+2x+4)-(25+x^3)=(x^3-2^3)-(25+x^3)$
$=-8-25=-33$
1. ĐKXĐ: \(x\ne\pm1\)
2. \(A=\left(\dfrac{x+1}{x-1}-\dfrac{x+3}{x+1}\right)\cdot\dfrac{x+1}{2}\)
\(=\dfrac{\left(x+1\right)^2-\left(x-3\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)
\(=\dfrac{x^2+2x+1-x^2+4x-3}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)
\(=\dfrac{6x-2}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)
\(=\dfrac{2\left(x-3\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x-3}{x-1}\)
3. Tại x = 5, A có giá trị là:
\(\dfrac{5-3}{5-1}=\dfrac{1}{2}\)
4. \(A=\dfrac{x-3}{x-1}\) \(=\dfrac{x-1-3}{x-1}=1-\dfrac{3}{x-1}\)
Để A nguyên => \(3⋮\left(x-1\right)\) hay \(\left(x-1\right)\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow\left\{{}\begin{matrix}x-1=1\\x-1=-1\\x-1=3\\x-1=-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\left(tmđk\right)\\x=0\left(tmđk\right)\\x=4\left(tmđk\right)\\x=-2\left(tmđk\right)\end{matrix}\right.\)
Vậy: A nguyên khi \(x=\left\{2;0;4;-2\right\}\)
( x + 3 )( x - 3 ) - ( x + 5 )( x - 1 ) - ( x - 4 )2
= x2 - 9 - ( x2 + 4x - 5 ) - ( x2 - 8x + 16 )
= x2 - 9 - x2 - 4x + 5 - x2 + 8x - 16
= -x2 + 4x - 20
= x^2 - 3^2 - ( x^2 + 4x - 5 ) - ( x^2 - 8x + 16 )
= x^2 - 9 - x^2 - 4x + 5 - x^2 +8x - 16
= -x^2 + 4x - 20