K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2020

( x + 3 )( x - 3 ) - ( x + 5 )( x - 1 ) - ( x - 4 )2

= x2 - 9 - ( x2 + 4x - 5 ) - ( x2 - 8x + 16 )

= x2 - 9 - x2 - 4x + 5 - x2 + 8x - 16

= -x2 + 4x - 20

2 tháng 10 2020

= x^2 - 3^2 - ( x^2 + 4x - 5 ) - ( x^2 - 8x + 16 ) 

= x^2 - 9 - x^2 - 4x + 5 - x^2 +8x - 16 

= -x^2 + 4x - 20 

7:

a: =>0,5x-5=2 hoặc 0,5x-5=-2

=>0,5x=3 hoặc 0,5x=7

=>x=6 hoặc x=14

b: |5x-2|=-3

mà |5x-2|>=0

nên ptvn

c: =>1/4x+3=0

=>1/4x=-3

=>x=-12

25 tháng 9 2021

c) \(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)\)

\(=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x.1+1^2\right)\)

\(=\left(x-1\right)^3-\left(x-1\right)^3\)

\(=0\)

25 tháng 9 2021

d) \(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2\)

\(=\left(x-3\right)^3-\left(x-3\right)\left(x^2+x.3+3^2\right)+6\left(x+1\right)^2\)

\(=\left(x-3\right)^3-\left(x-3\right)^3+6\left(x+1\right)^2\)

\(=0+6\left(x+1\right)^2\)

\(=6\left(x+1\right)^2\)

22 tháng 2 2022

`Answer:`

`a)`

`A=5(x+1)^2-3(x-3)^2-4(x^2-4)`

`=>A=5(x^2+2x+1)-3(x^2-6x+9)-4x^2+16`

`=>A=5x^2+10x+5-3x^2+18x-27-4x^2+16`

`=>A=(5x^2-3x^2-4x^2)+(10x+18x)+(5-27+16)`

`=>A=-2x^2+28x-6`

`b)`

`B=5(x+1)^2-3(x-3)^2-4(x+2)(x-2)`

`=2x(3x+5)-3(3x+5)-2x(x^2-4x+4)-[(2x)^2-3^2]`

`=6x^2+10x-9x-15-2x^3+8x^2-8x-4x^2+9`

`=(6x^2-4x^2+8x^2)-2x^3+(10x-9x-8x)+(-15+9)`

Thay `x=-7` vào ta được:

`B=10(-7)^2-2(-7)^3-7(-7)-6`

`=>B=10.49-2(-343)+49-6`

`=>B=490+686+49-6`

`=>B=1219`

Bài 1: Cho biểu thức: A= (x^2-3/x^2-9  + 1/x-3):x/x+3            a, Rút gọn A.            b, Tìm các giá trị của x để A = 3Bài 2: Cho biểu thức: A = (x/x^2-4 + 1/x+2 - 2/x-2) : (1- x/x+2) Với x khác 2 và -2            a, Rút gọn biểu thức,            b, Tìm các giá trị nguyên của x để A nhận giá trị nguyên.Bài 3: Cho biểu thức A = 2x/x+3 + x+1/x-3 + 3x-11x/9-x^2, với x khác 3 , -3            a, Rút gọn biểu thức A.            b, Tính giá trị...
Đọc tiếp

Bài 1: Cho biểu thức: A= (x^2-3/x^2-9  + 1/x-3):x/x+3

            a, Rút gọn A.

            b, Tìm các giá trị của x để A = 3

Bài 2: Cho biểu thức: A = (x/x^2-4 + 1/x+2 - 2/x-2) : (1- x/x+2) Với x khác 2 và -2

            a, Rút gọn biểu thức,

            b, Tìm các giá trị nguyên của x để A nhận giá trị nguyên.

Bài 3: Cho biểu thức A = 2x/x+3 + x+1/x-3 + 3x-11x/9-x^2, với x khác 3 , -3

            a, Rút gọn biểu thức A.

            b, Tính giá trị của A khi x=5

            c, Tìm gái trị nguyên của x để biểu thức A có giá trị nguyên.

Bài 4: Cho biểu thức: A = (x/x^2-4 + 1/x+2 - 2/x-2) : (1- x/x+2) , với x khác 2 .-2

            a, Rút gọn A.

            b, Tính giá trị của A khi x = -4

            c, Tìm các giá trị nguyên của x để A có giá trị là số nguyên.

1

Bài 1: 

a: \(A=\dfrac{x^2-3+x+3}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x}=\dfrac{x\left(x+1\right)}{x\left(x-3\right)}=\dfrac{x+1}{x-3}\)

b: Để A=3 thì 3x-9=x+1

=>2x=10

hay x=5

Bài 2: 

a: \(A=\dfrac{x+x-2-2x-4}{\left(x-2\right)\left(x+2\right)}:\dfrac{x+2-x}{x+2}\)

\(=\dfrac{-6}{x-2}\cdot\dfrac{1}{2}=\dfrac{-3}{x-2}\)

b: Để A nguyên thì \(x-2\in\left\{1;-1;3;-3\right\}\)

hay \(x\in\left\{3;1;5;-1\right\}\)

AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề và hỗ trợ bạn tốt hơn nhé.

2 tháng 12 2021

\(\left(x-1\right)^3-x\left(x-2\right)\left(x+2\right)+3\left(x-5\right)^2\\ =x^3-3x^2+3x-1-x\left(x^2-4\right)+3\left(x^2-10x+25\right)\)

\(=x^3-3x^2+3x-1-x^3+4x+3x^2-30x+75\)

\(=74-23x\)

22 tháng 10 2023

1:

a: \(\left(2x-5\right)^2-4x\left(x+3\right)\)

\(=4x^2-20x+25-4x^2-12x\)

=-32x+25

b: \(\left(x-2\right)^3-6\left(x+4\right)\left(x-4\right)-\left(x-2\right)\left(x^2+2x+4\right)\)

\(=x^3-6x^2+12x-8-\left(x^3-8\right)-6\left(x^2-16\right)\)

\(=-6x^2+12x-6x^2+96=-12x^2+12x+96\)

c: \(\left(x-1\right)^2-2\left(x-1\right)\left(x+2\right)+\left(x+2\right)^2+5\left(2x-3\right)\)

\(=\left(x-1-x-2\right)^2+5\left(2x-3\right)\)

\(=\left(-3\right)^2+5\left(2x-3\right)\)

\(=9+10x-15=10x-6\)

2: 

a: \(\left(2-3x\right)^2-5x\left(x-4\right)+4\left(x-1\right)\)

\(=9x^2-12x+4-5x^2+20x+4x-4\)

\(=4x^2+12x\)

b: \(\left(3-x\right)\left(x^2+3x+9\right)+\left(x-3\right)^3\)

\(=27-x^3+x^3-9x^2+27x-27\)

\(=-9x^2+27x\)

c: \(\left(x-4\right)^2\left(x+4\right)-\left(x-4\right)\left(x+4\right)^2+3\left(x^2-16\right)\)

\(=\left(x-4\right)\left(x+4\right)\left(x-4-x-4\right)+3\left(x^2-16\right)\)

\(=\left(x^2-16\right)\left(-8\right)+3\left(x^2-16\right)\)

\(=-5\left(x^2-16\right)=-5x^2+80\)

4 tháng 7 2023

1) \(\left(x+1\right)^3-\left(x-4\right)\left(x+4\right)-x^3\)

\(=\left(x^3+3x^2+3x+1\right)-\left(x^2-16\right)-x^3\)

\(=x^3+3x^2+3x+1-x^2+16-x^3\)

\(=2x^2+3x+17\)

2) \(\left(x+2\right)^3-x\left(x+3\right)\left(x-3\right)-12x^2-8\)

\(=\left(x^3+6x^2+12x+8\right)-x\left(x^2-9\right)-12x^2-8\)

\(=x^3+6x^2+12x+8-x^3+9x-12x^2-8\)

\(=-6x^2+21x\)

`@` `\text {Ans}`

`\downarrow`

`1.`

\((x + 1) ^ 3 - (x - 4)(x + 4) - x ^ 3\)

`= x^3 + 3x^2 + 3x + 1 - [ x(x+4) - 4(x+4)] - x^3`

`= x^3 + 3x^2 + 3x + 1 - (x^2 + 4x - 4x - 16) - x^3`

`= x^3 + 3x^2 + 3x + 1 - (x^2 - 16) - x^3`

`= x^3 + 3x^2 + 3x + 1 - x^2 + 16 - x^3`

`= (x^3 - x^3) + (3x^2 - x^2) + 3x + (1+16)`

`= 2x^2 + 3x + 17`

`2.`

\((x + 2) ^ 3 - x(x + 3)(x - 3) - 12x ^ 2 - 8\)

`= x^3 + 6x^2 + 12x + 8 - [ (x^2 + 3x)(x-3)] - 12x^2 - 8`

`= x^3 + 6x^2 + 12x + 8 - (x^3 - 9x) - 12x^2 - 8`

`= x^3 + 6x^2 + 12x +8 - x^3 + 9x - 12x^2 - 8`

`= (x^3 - x^3) + (6x^2 - 12x^2) + (12x + 9x) + (8-8)`

`= -6x^2 + 21x `

27 tháng 8 2021

`a)(2x-1)^2+(x+3)^2-5(x-7)(x+7)`

`=4x^2-4x+1+x^2+6x+9-5(x^2-49)`

`=5x^2-5x^2-4x+6x+1+9+245`

`=2x+255`

`b)(x-2)(x^2+2x+4)-(25+x^3)`

`=x^3-8-x^3-25=-33`

AH
Akai Haruma
Giáo viên
27 tháng 8 2021

Lời giải:

a. 

$(2x-1)^2+(x+3)^2-5(x-7)(x+7)$

$=4x^2-4x+1+(x^2+6x+9)-5(x^2-49)$

$=5x^2+2x+10-(5x^2-245)=2x+255$

b.

$(x-2)(x^2+2x+4)-(25+x^3)=(x^3-2^3)-(25+x^3)$

$=-8-25=-33$

26 tháng 1 2022

1. ĐKXĐ: \(x\ne\pm1\)

 

2. \(A=\left(\dfrac{x+1}{x-1}-\dfrac{x+3}{x+1}\right)\cdot\dfrac{x+1}{2}\)

\(=\dfrac{\left(x+1\right)^2-\left(x-3\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)

\(=\dfrac{x^2+2x+1-x^2+4x-3}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)

\(=\dfrac{6x-2}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)

\(=\dfrac{2\left(x-3\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x-3}{x-1}\)

 

3. Tại x = 5, A có giá trị là:

\(\dfrac{5-3}{5-1}=\dfrac{1}{2}\)

 

4. \(A=\dfrac{x-3}{x-1}\) \(=\dfrac{x-1-3}{x-1}=1-\dfrac{3}{x-1}\)

Để A nguyên => \(3⋮\left(x-1\right)\) hay \(\left(x-1\right)\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}x-1=1\\x-1=-1\\x-1=3\\x-1=-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\left(tmđk\right)\\x=0\left(tmđk\right)\\x=4\left(tmđk\right)\\x=-2\left(tmđk\right)\end{matrix}\right.\)

Vậy: A nguyên khi \(x=\left\{2;0;4;-2\right\}\)