K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 9 2020

Chưa đủ dữ kiện đề bài để chứng minh đẳng thức. Bạn xem lại đề.

17 tháng 8 2019

a/ Theo quy tắc 3 điểm: \(\overrightarrow{AB}=\overrightarrow{AO}+\overrightarrow{OB}\)

\(\overrightarrow{AD}=\overrightarrow{AO}+\overrightarrow{OD}\)

\(\Rightarrow\overrightarrow{AD}+\overrightarrow{AB}=\overrightarrow{AO}+\overrightarrow{OB}+\overrightarrow{AO}+\overrightarrow{OD}\)

\(\overrightarrow{OD}=-\overrightarrow{OB}\)

\(\Rightarrow\overrightarrow{AD}+\overrightarrow{AB}=2\overrightarrow{AO}\)

b/ \(\overrightarrow{AC}=2\overrightarrow{AO}=2\overrightarrow{a};\overrightarrow{BD}=2\overrightarrow{BO}=2\overrightarrow{b}\)

\(\overrightarrow{BC}=\overrightarrow{BO}+\overrightarrow{OC}=\overrightarrow{BO}+\overrightarrow{AO}=\overrightarrow{a}+\overrightarrow{b}=-\overrightarrow{DA}\)

\(\overrightarrow{AB}=-\overrightarrow{CD}=\overrightarrow{AO}+\overrightarrow{OB}=\overrightarrow{a}-\overrightarrow{b}\)

27 tháng 12 2020

600 

4 tháng 9 2019

các bn vẽ hình hộ t nha

25 tháng 11 2023

Sửa đề: Chứng minh \(\overrightarrow{AB}+\overrightarrow{MC}=\overrightarrow{AC}+\overrightarrow{MB}\)

\(\overrightarrow{AB}-\overrightarrow{MB}=\overrightarrow{AB}+\overrightarrow{BM}=\overrightarrow{AM}\)

\(\overrightarrow{AC}-\overrightarrow{MC}=\overrightarrow{AC}+\overrightarrow{CM}=\overrightarrow{AC}\)

Do đó: \(\overrightarrow{AB}-\overrightarrow{MB}=\overrightarrow{AC}-\overrightarrow{MC}\)

=>\(\overrightarrow{AB}+\overrightarrow{MC}=\overrightarrow{AC}+\overrightarrow{MB}\)