tìm hiệu stn nhỏ nhất và stn nhỏ nhất gồm ba chữ số o, 1, 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số gồm 100 chữ số 3 có là: 3333 ...33 (100 chữ số 3) = 3 x 111 ...11 (100 chữ số 1)
Số nhỏ nhất gồm toàn chữ số 1 chia hết cho số gồm 100 chữ số 3 thì số đó phải vừa chia hết cho 3 vừa chia hết cho 1111 ...11 (100 chữ số 1)
Số nhỏ nhất chia hết cho số có 100 chữ số thì phải là số có 100 chữ số 1, 200 chữ số 1 , 300 chữ số 1 .....
Mà trong các số đó có số 300 chữ số 1 là số nhỏ nhất vừa chết cho 3 vừa chia hết cho 1111 ... (100 chữ số1)
Vậy số nhỏ nhất phải tìm là: 1111111 ... 11(300 chữ số 1)
Số gồm 100 chữ số 3 có là: 3333 ...33 (100 chữ số 3) = 3 x 111 ...11 (100 chữ số 1)
Số nhỏ nhất gồm toàn chữ số 1 chia hết cho số gồm 100 chữ số 3 thì số đó phải vừa chia hết cho 3 vừa chia hết cho 1111 ...11 (100 chữ số 1)
Số nhỏ nhất chia hết cho số có 100 chữ số thì phải là số có 100 chữ số 1, 200 chữ số 1 , 300 chữ số 1 .....
Mà trong các số đó có số 300 chữ số 1 là số nhỏ nhất vừa chết cho 3 vừa chia hết cho 1111 ... (100 chữ số1)
Vậy số nhỏ nhất phải tìm là: 1111111 ... 11(300 chữ số 1)
Số tự nhiên chia hết cho 2 và cho 5 nên chữ số tận cùng là 0
Tổng các chữ số có tổng là 26 mà trong đó có 1 chữ số 0 nên số tự nhiên đó phải có ít nhất 4 chữ số
Số tự nhiên nhỏ nhất thoả mãn đề bài là 8990
STN nhỏ nhất có 3 chữ số khác nhau là: 102
STN lớn nhất có 3 chữ số khác nhau là: 987
Tổng của chúng là:
102 + 987 = 1089
Số tự nhiên nhỏ nhất có 3 cs khác nhau : 102
Số tự nhiên lớn nhất có 3 cs khác nhau : 987
Tổng của chúng là :
102 + 987 = 1089
Đ/s:..........
1, Số đó là 3x+1=4y+3=5z+1 => 4y+2=3x=5z => 4y+2 chia hết cho 15. Số chia hết cho 15 có số tận cùng là 0 hoặc 5 nên 4y có số tận cùng là 3 hoặc 8. Số 4y chia hết cho 4 nên phải là số chẵn, do đó nó có tận cùng là 8.
Lần lượt thử các số chia hết cho 4: 8 + 2 = 10 không chia hết cho 15; 28+2=30 chia hết.
Vì vậy số đó là 31.
2,Gọi số cần tìm là a
Giả sử a chia cho 5 được b dư 3 ta có
a = 5b + 3
2a = 10b + 6 = 10b + 5 + 1
2a – 1 = 10b + 5 hay nói cách khác 2a – 1 chia hết cho 5(1)
giả sử a chia cho 7 được c dư 4 ta có
a = 7c + 4
2a = 14c + 8 = 14c + 7 + 1
2a – 1 = 14c + 7 hay nói cách khác 2a – 1 chia hết cho 7(2)
giả sử a chia cho 9 được d dư 5 ta có
a = 9a + 5
2a = 18d + 10 = 18d + 9 + 1
2a – 1 = 18d + 9 hay 2a – 1 chia hết cho 9(3)
từ 1, 2 và 3 ta có 2a - 1 chia cho 5, 7, 9 vì yêu cầu tìm số tự nhiên nhỏ nhất nên 2a – 1 là bội số chung nhỏ nhất của (5,7,9) = 5.7.9 = 315
suy ra 2a – 1 = 315
2a = 316
a = 158
vậy số cần tìm là 158
1, Số đó là 3x+1=4y+3=5z+1 => 4y+2=3x=5z => 4y+2 chia hết cho 15. Số chia hết cho 15 có số tận cùng là 0 hoặc 5 nên 4y có số tận cùng là 3 hoặc 8. Số 4y chia hết cho 4 nên phải là số chẵn, do đó nó có tận cùng là 8.
Lần lượt thử các số chia hết cho 4: 8 + 2 = 10 không chia hết cho 15; 28+2=30 chia hết.
Vì vậy số đó là 31.
2,Gọi số cần tìm là a
Giả sử a chia cho 5 được b dư 3 ta có
a = 5b + 3
2a = 10b + 6 = 10b + 5 + 1
2a – 1 = 10b + 5 hay nói cách khác 2a – 1 chia hết cho 5(1)
giả sử a chia cho 7 được c dư 4 ta có
a = 7c + 4
2a = 14c + 8 = 14c + 7 + 1
2a – 1 = 14c + 7 hay nói cách khác 2a – 1 chia hết cho 7(2)
giả sử a chia cho 9 được d dư 5 ta có
a = 9a + 5
2a = 18d + 10 = 18d + 9 + 1
2a – 1 = 18d + 9 hay 2a – 1 chia hết cho 9(3)
từ 1, 2 và 3 ta có 2a - 1 chia cho 5, 7, 9 vì yêu cầu tìm số tự nhiên nhỏ nhất nên 2a – 1 là bội số chung nhỏ nhất của (5,7,9) = 5.7.9 = 315
suy ra 2a – 1 = 315
2a = 316
a = 158
vậy số cần tìm là 158
Bài 1 :
Gọi số tự nhiên nhỏ nhất là n
Ta có : Số 2n chia cho 3,4,5 đều dư 2.
=> 2n - 2 Chia hết cho 3,4,5
=> 2n - 2 thuộc BC(3,4,5 )
Mà n nhỏ nhất => 2n - 2 = BCNN( 3,4,5 )
Mà 4 = 22
=> BCNN( 3,4,5 ) = 22.3.5 = 60
=> 2n - 2 = 60
=> 2n = 60 + 2 = 62
=> n = 62 : 2 = 31
Vậy n = 31 là giá trị cần tìm
a, Vì số đó chia cho 6 dư 5; chia 19 dư 2 nên khi ta thêm vào số đó 55 đơn vị thì trở thành số chia hết cho cả 6 và 19
Ta có: \(\left\{{}\begin{matrix}a+55⋮6\\a+55⋮19\end{matrix}\right.\) ⇒ a + 55 \(\in\) BC(6; 19)
6 = 2.3; 19 = 19; BCNN(6; 19) = 2.3.19 = 114
⇒ BC(6; 19) = {0; 114; 228; 342;...;}
a \(\in\) { - 55; 59; 173;...;}
Vì a là số tự nhiên nhỏ nhất nên a = 59
a + 55 \(\in\) B(114)
⇒ a = 114.k - 55 (k ≥1; k \(\in\) N)
Bài 2:
Vì số đó chia 5 dư 1 chia 21 dư 3 nên khi số đó thêm vào 39 đơn vị thì trở thành số chia hết cho cả 5 và 21
Ta có: a + 39 ⋮ 5; a + 39 ⋮ 21 ⇒ a + 39 \(\in\) BC(5; 21)
5 = 5; 21 = 3.7 BCNN(5; 21) = 3.5.7 = 105
⇒BC(5; 21) = {0; 105; 210;...;}
a+ 39 \(\in\) {0; 105; 210;...;}
a \(\in\) {-39; 66; 171;...;}
Vì a là số tự nhiên nhỏ nhất nên a = 66
a + 39 ⋮ 105
⇒ a = 105.k - 39 (k ≥1; k \(\in\) N)
STN nhỏ nhất là: 102
STN lớn nhất là : 210
Hiệu của STN lớn nhất với STN nhỏ nhất là : 210-102=108