Giải pt : \(\frac{\sin5x}{5\sin x}=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(sin\left(4x-10^0\right)=\dfrac{\sqrt{2}}{2}\)
\(\Leftrightarrow sin\left(4x-10^0\right)=sin45^0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-10^0=45^0+k360^0\\4x-10^0=135^0+k360^0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=55^0+k360^0\\4x=145^0+k360^0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=13,75^0+k90^0\\x=36,25^0+k90^0\end{matrix}\right.\) (\(k\in Z\))
2.
Đề không đúng
3.
ĐKXĐ: \(\left\{{}\begin{matrix}cos2x\ne0\\cosx\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\\x\ne\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)
\(tan2x=tanx\)
\(\Rightarrow2x=x+k\pi\)
\(\Rightarrow x=k\pi\)
4.
\(cot\left(x+\dfrac{\pi}{5}\right)=-1\)
\(\Leftrightarrow x+\dfrac{\pi}{5}=-\dfrac{\pi}{4}+k\pi\)
\(\Leftrightarrow x=-\dfrac{9\pi}{20}+k\pi\) (\(k\in Z\))
a, ta có 2x + π/3 = 3π/4 +k2π hoặc 2x + π/3 = -3π/4 + k2π
=> x= 5π/24 + kπ hoặc x= -13π/24 +kπ
b, đề sai phải ko
c, cos22x - sin22x - 2sinx -1=0
<=> -2sin22x -2sin2x =0
<=> sin2x=0 hoặc sin2x=-1
<=> x=kπ hoặc x= π/2 + kπ ; x=-π/4 +kπ hoặc x=5π/8 + kπ
d, cos5xcosπ/4 - sin5xsinπ/4 = -1/2
cos( 5x + π/4 ) = -1/2
<=> x=π/12 +k2π/5 hoặc x= -11π/60 + k2π/5
f,4x+π/3=3π/10 -x +k2π hoặc 4x+π/3 = x - 3π/10 +k2π
<=> x =-π/150 + k2π/5 hoặc x = π/90 +k2π/3
Giải các Pt sau:
cos5s - sin2x =0
sin5x + cos2x =1
cos2x + \(2\sqrt{3}sinxcosx\) - sin2x = \(\sqrt{2}\)
ĐKXĐ: \(x\ne k\pi\)
\(\Leftrightarrow sin5x=5sinx\)
\(\Leftrightarrow sin\left(4x+x\right)-5sinx=0\)
\(\Leftrightarrow sin4x.cosx+cos4x.sinx-5sinx=0\)
\(\Leftrightarrow4sinx.cos^2x.cos2x+cos4x.sinx-5sinx=0\)
\(\Leftrightarrow4cos^2x.cos2x+cos4x-5=0\)
\(\Leftrightarrow2\left(1+cos2x\right).cos2x+2cos^22x-1-5=0\)
\(\Leftrightarrow2cos^22x+cos2x-3=0\Rightarrow\left[{}\begin{matrix}cos2x=1\\cos2x=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow sinx=0\) (loại)
Vậy pt đã cho vô nghiệm