K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 8 2020

4.

ĐKXĐ: \(2cos^2x+sinx-1\ne0\)

\(\Leftrightarrow-2sin^2x+sinx+1\ne0\Rightarrow\left\{{}\begin{matrix}sinx\ne1\\sinx\ne-\frac{1}{2}\end{matrix}\right.\)

Khi đó pt tương đương:

\(\Leftrightarrow\frac{cosx-sin2x}{cos2x+sinx}=\sqrt{3}\)

\(\Leftrightarrow cosx-sin2x=\sqrt{3}cos2x+\sqrt{3}sinx\)

\(\Leftrightarrow cosx-\sqrt{3}sinx=\sqrt{3}cos2x+sin2x\)

\(\Leftrightarrow\frac{1}{2}cosx-\frac{\sqrt{3}}{2}sinx=\frac{\sqrt{3}}{2}cos2x+\frac{1}{2}sin2x\)

\(\Leftrightarrow cos\left(x+\frac{\pi}{3}\right)=cos\left(2x-\frac{\pi}{6}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{6}=x+\frac{\pi}{3}+k2\pi\\2x-\frac{\pi}{6}=-x-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\left(loại\right)\\x=-\frac{\pi}{18}+\frac{k2\pi}{3}\end{matrix}\right.\)

NV
15 tháng 8 2020

3.

\(\Leftrightarrow cos7x+\sqrt{3}sin7x=sin5x+\sqrt{3}cos5x\)

\(\Leftrightarrow\frac{\sqrt{3}}{2}sin7x+\frac{1}{2}cos7x=\frac{1}{2}sin5x+\frac{\sqrt{3}}{2}cos5x\)

\(\Leftrightarrow sin\left(7x+\frac{\pi}{6}\right)=sin\left(5x+\frac{\pi}{3}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}7x+\frac{\pi}{6}=5x+\frac{\pi}{3}+k2\pi\\7x+\frac{\pi}{6}=\frac{2\pi}{3}-5x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{12}+k\pi\\x=\frac{\pi}{24}+\frac{k\pi}{6}\end{matrix}\right.\)

NV
11 tháng 2 2020

a/ Hmm, bạn có nhầm lẫn chỗ nào ko nhỉ, nghiệm của pt này xấu khủng khiếp

b/ \(\Leftrightarrow sin\frac{5x}{2}-cos\frac{5x}{2}-sin\frac{x}{2}-cos\frac{x}{2}=cos\frac{3x}{2}\)

\(\Leftrightarrow2cos\frac{3x}{2}.sinx-2cos\frac{3x}{2}cosx=cos\frac{3x}{2}\)

\(\Leftrightarrow cos\frac{3x}{2}\left(2sinx-2cosx-1\right)=0\)

\(\Leftrightarrow cos\frac{3x}{2}\left(\sqrt{2}sin\left(x-\frac{\pi}{4}\right)-1\right)=0\)

c/ Do \(cosx\ne0\), chia 2 vế cho cosx ta được:

\(3\sqrt{tanx+1}\left(tanx+2\right)=5\left(tanx+3\right)\)

Đặt \(\sqrt{tanx+1}=t\ge0\)

\(\Leftrightarrow3t\left(t^2+1\right)=5\left(t^2+2\right)\)

\(\Leftrightarrow3t^3-5t^2+3t-10=0\)

\(\Leftrightarrow\left(t-2\right)\left(3t^2+t+5\right)=0\)

d/ \(\Leftrightarrow\sqrt{2}\left(\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\right)=\frac{\sqrt{3}}{2}cos2x-\frac{1}{2}sin2x\)

\(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{3}\right)=-sin\left(2x-\frac{\pi}{3}\right)\)

Đặt \(x+\frac{\pi}{3}=a\Rightarrow2x=2a-\frac{2\pi}{3}\Rightarrow2x-\frac{\pi}{3}=2a-\pi\)

\(\sqrt{2}sina=-sin\left(2a-\pi\right)=sin2a=2sina.cosa\)

\(\Leftrightarrow\sqrt{2}sina\left(\sqrt{2}cosa-1\right)=0\)

NV
14 tháng 9 2020

1.

\(\Leftrightarrow cos3x=-\frac{1}{2}\Leftrightarrow\left[{}\begin{matrix}x=40^0+k120^0\\x=-40^0+k120^0\end{matrix}\right.\)

\(\Rightarrow x=\left\{40^0;160^0;80^0\right\}\)

2.

Bạn coi lại đề, số \(-\sqrt{3}\) bên vế trái ko hề hợp lý, toán cho cấp 1 như vầy còn được chứ cấp 3 chắc ko ai cho đề kiểu vậy đâu

3.

\(\Leftrightarrow\sqrt{3}sin3x-cos3x=-sin5x-\sqrt{3}cos5x\)

\(\Leftrightarrow\frac{\sqrt{3}}{2}sin3x-\frac{1}{2}cos3x=-\left(\frac{1}{2}sin5x+\frac{\sqrt{3}}{2}cos5x\right)\)

\(\Leftrightarrow sin\left(3x-\frac{\pi}{6}\right)=sin\left(-5x-\frac{\pi}{3}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-\frac{\pi}{6}=-5x-\frac{\pi}{3}+k2\pi\\3x-\frac{\pi}{6}=\frac{4\pi}{3}+5x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{48}+\frac{k\pi}{4}\\x=-\frac{7\pi}{12}+k\pi\end{matrix}\right.\)