cho tam giác ABC có chu vi bằng 48cm. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, BC, CA.Khi đó, nửa chu vi của tam giác MNP bằng:
A.24cm B.12cm C.6cm D.Cả A, B, C đều sai
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M; N; Q lần lượt là trung điểm của AB; AC; BC (gt)
=> MN; NQ; MQ là đường trung bình của tam giác ABC (đn)
=> MN = 1/2BC ; NQ = 1/2AB; MQ = 1/2AC (đl)
=> MN + NQ + MQ = 1/2BC + 1/2AB + 1/2AC
=> MN + NQ + MQ = 1/2(AB + AC + BC)
chu vi của tam giác ABC = 48 cm (gt) => AB + AC + BC = 48
=> MN + NQ + MQ = 1/2*48 = 24
có NQ : MN : MQ = 9 : 8 : 7
=> NQ/9 = MN/8 = MQ/7
=> (NQ + MN + MQ)/(9 + 8 + 7) = NQ/9 = MN/8 = MQ/7
=> 24/24 = NQ/9 = MN/8 = MQ/7
=> 1 = NQ/9 = MN/8 = MQ/7
=> NQ = 9; MN = 8; MQ = 7
từ đó tính ra các cạnh
a,xét tam giác ABC có MA=MB
NA=NC
Nên MN // BC Hay MI // BP; NI //PC
Xét tam giác ABP có MI // BP; NA=NB Nên MI sẽ đi qua trung điểm AP hay AI=IP(T/C đường trung bình của tam giác)
b, ta có IM là đường trung bình của tam giác ABP (theo CM trên )
\(\Rightarrow MI=\frac{1}{2}BP\)(1)
ta có IN là đường trung bình của tam giác APC (vì AN=AC; IN//PC)
\(\Rightarrow IN=\frac{1}{2}BC\) (2)
Mà BP=PC ( do p là trung điểm của BC)
từ (1);(2);(3) suy ra MI=IN
c, ta có PABC=AB+BC+AC=54 (cm) (P là chu vi bạn nhé)
ta có NP =\(\frac{1}{2}AB\)do NA=NC;PC=PB nên NP là đường trung bình của tam giác ABC
tương tự ta có \(MN=\frac{1}{2}BC\)và \(MP=\frac{1}{2}AC\)
mặt khác PMNP=MN+NP+MP=\(\frac{1}{2}BC+\frac{1}{2}AB+\frac{1}{2}AC\)=\(\frac{1}{2}\left(BC+AB+AC\right)\)=\(\frac{1}{2}.54=27\)
Vậy chu vi tam giác MNP là 27cm
bài1
a) EF=??
b) không đồng dạng
c) không đồng dạng
d) Đồng dạng (vì sao thì bạn nhắn cho mình nha)
các cặp góc bằng nhau ABC=DEF; BCA=EFD; CAB=FDE
bài 2
a) theo tính chất đường trung bình trong mỗi tam giác (không hiểu thì nhắn cho mình)
ta có MN=1/2AB => MN/AB=1/2 (1)
NM=1/2BC => NP/BC=1/2 (2)
MP=1/2AC => MP/AC=1/2 (3)
từ (1),(2),(3) => MNP đồng dạng với ABC
b) vì MNP đồng dạng với ABC với tỉ số k là 2 ( theo câu a)
nên chu vi ABC = 2 lần chu vi MNP =40cm
Chọn B