Với n nguyên dương, hãy CM:
\(3^{2n+1}+5\cdot2^{3n+1}⋮19\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3
=> ĐPCM;
A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1 = 3 n . 27 + 3 + 2 n + 1 . 4 + 2 = 3 n .30 + 2 n .6 = 6. 3 n .5 + 2 n ⋮ 6
nêu những cặp số nguyên tố cùng nhau
a,(n+1)và(2n+3)
b,(2n+3)và(3n+5)
c,(12n+1)và(n+20)
d,(n+19)và(n+20)
a) Gọi \(d\inƯC\left(n+1;2n+3\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)
\(\Leftrightarrow2n+2-2n-3⋮d\)
\(\Leftrightarrow-1⋮d\)
\(\Leftrightarrow d\inƯ\left(-1\right)\)
\(\Leftrightarrow d\in\left\{1;-1\right\}\)
\(\LeftrightarrowƯC\left(n+1;2n+3\right)=\left\{1;-1\right\}\)
\(\LeftrightarrowƯCLN\left(n+1;2n+3\right)=1\)
hay n+1 và 2n+3 là cặp số nguyên tố cùng nhau(đpcm)
\(3^{2n+1}+5.2^{3n+1}\)
Với \(n=1\)thì \(3^5+5.2^4=243+80=323⋮19\)
Gải sử \(3^{2k+1}+5.2^{3k+1}⋮19\)
Xét \(3^{3k+5}+5.2^{3k+4}=3^{3k+2}.3^3+5.2^{3k+1}.2^3\)
\(=27\left(3^{3k+2}+5.2^{3k+1}\right)-19.3^{2k+1}⋮19\)