Cho tam giác ABC cân tại A có trung tuyến BM. Gọi D là điểm đối xứng với B qua M.
a) Tứ giác ABCD là hình gì? Vì sao?
Không cần vẽ hình đâu ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
\(a,\) Vì M là trung điểm AC và BD nên ABCD là hình bình hành
\(b,\) Vì ABCD là hình bình hành nên \(AD//BC;AD=BC\)
Do đó \(AK//CH;AK=CH(\dfrac{1}{2}AD=\dfrac{1}{2}BC)\)
Do đó AHCK là hình bình hành
Mà \(\Delta ABC\) cân tại A nên trung tuyến AH cũng là đường cao
Do đó \(AH\bot HC\)
Vậy AHCK là hình chữ nhật
\(c,\) Vì AHCK là hình chữ nhật nên trung điểm M của AC cũng là trung điểm của HK
Vậy H,M,K thẳng hàng
\(d,\) Để AHCK là hình vuông thì \(HK\bot AC\) tại M
Mà H,K là trung điểm BC,AC nên HK là đtb \(\Delta ABC\)
Do đó \(HK//AB\)
Mà \(HK\bot AC\) nên \(AC\bot AB\)
Vậy nếu tam giác ABC vuông cân tại A thì AHCK là hình vuông
a: Xét tứ giác AMCK có
I là trung điểm của AC
I là trung điểm của MK
Do đó: AMCK là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
Xét tứ giác AMCK có
I là trung điểm của AC
I là trung điểm của MK
Do đó: AMCK là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
a)
Xét tứ giác MNPQ có
G là trung điểm của đường chéo MP(gt)
G là trung điểm của đường chéo NQ(gt)
Do đó: MNPQ là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b)
Xét ΔABC có
BM là đường trung tuyến ứng với cạnh AC(gt)
CN là đường trung tuyến ứng với cạnh AB(gt)
BM cắt CN tại G(gt)
Do đó: G là trọng tâm của ΔABC(Định lí ba đường trung tuyến của tam giác)
Suy ra: \(MG=\dfrac{1}{3}MB;BG=\dfrac{2}{3}MB;NG=\dfrac{1}{3}NC;CG=\dfrac{2}{3}NC\)(1)
Ta có: G là trung điểm của MP(gt)
nên MG=GP
mà \(MG=\dfrac{1}{3}MB\)
nên \(MG=GP=\dfrac{1}{3}MB\)
Ta có: MG+GP=MP(G nằm giữa M và P)
nên \(MP=\dfrac{1}{3}MB+\dfrac{1}{3}MB=\dfrac{2}{3}MB\)(1)
Ta có: G là trung điểm của NQ(gt)
nên \(GN=GQ=\dfrac{1}{3}NC\)
Ta có: NG+GQ=NQ(G là trung điểm của NQ)
nên \(NQ=\dfrac{1}{3}NC+\dfrac{1}{3}NC=\dfrac{2}{3}NC\)(2)
Ta có: \(AN=NB=\dfrac{AB}{2}\)(N là trung điểm của AB)
\(AM=MC=\dfrac{AC}{2}\)(M là trung điểm của AC)
mà AB=AC(ΔBAC cân tại A)
nên AN=NB=AM=MC
Xét ΔAMB và ΔANC có
AB=AC(ΔABC cân tại A)
\(\widehat{BAM}\) chung
AM=AN(cmt)
Do đó: ΔAMB=ΔANC(c-g-c)
Suy ra: BM=CN(hai cạnh tương ứng)(3)
Từ (1), (2) và (3) suy ra NQ=MP
Hình bình hành MNPQ có NQ=MP(cmt)
nên MNPQ là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
a: Xét tứ giác AEMC có
ME//AC
ME=AC
Do đó: AEMC là hình bình hành
a: Xét tứ giác AMCK có
I là trung điểm của AC
I là trung điểm của MK
Do đó: AMCK là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành