B=2+4+6+.....+2n (n thuộc N sao) là tích của hai số tự nhiên liên tiếp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số số hạng là \(\dfrac{2n-2}{2}+1=n-1+1=n\left(số\right)\)
Tổng của dãy số là:
\(\left(2n+2\right)\cdot\dfrac{n}{2}=n\left(n+1\right)\)
=>A là tích của hai số tự nhiên liên tiếp
a) Từ giả thiếtta có thể đặt : \(n^2-1=3m\left(m+1\right)\)với m là 1 số nguyên dương
Biến đổi phương trình ta có :
\(\left(2n-1;2n+1\right)=1\)nên dẫn đến :
TH1 : \(2n-1=3u^2;2n+1=v^2\)
TH2 : \(2n-1=u^2;2n+1=3v^2\)
TH1 :
\(\Rightarrow v^2-3u^2=2\)
\(\Rightarrow v^2\equiv2\left(mod3\right)\)( vô lí )
Còn lại TH2 cho ta \(2n-1\)là số chính phương
b) Ta có :
\(\frac{n^2-1}{3}=k\left(k+1\right)\left(k\in N\right)\)
\(\Leftrightarrow n^2=3k^2+3k+1\)
\(\Leftrightarrow4n^2-1=12k^2+12k+3\)
\(\Leftrightarrow\left(2n-1\right)\left(2n+1\right)=3\left(2k+1\right)^2\)
- Xét 2 trường hợp :
TH1 : \(\hept{\begin{cases}2n-1=3p^2\\2n+1=q^2\end{cases}}\)
TH2 : \(\hept{\begin{cases}2n-1=p^2\\2n+1=3q^2\end{cases}}\)
+) TH1 :
Hệ \(PT\Leftrightarrow q^2=3p^2+2\equiv2\left(mod3\right)\)( loại, vì số chính phương chia 3 dư 0 hoặc 1 )
+) TH2 :
Hệ \(PT\Leftrightarrow p=2a+1\Rightarrow2n=\left(2a+1\right)^2+1\Rightarrow n^2=a^2+\left(a+1\right)^2\)( đpcm )
Bài 1
a) 4n - 5 chia hết cho 2n - 1
=> 4n - 2 - 3 chia hết cho 2n - 1
=> 2(2n -1) - 3 chia hết cho 2n - 1
=> -3 chia hết ccho 2n -1
=> 2n -1 thuộc Ư(-3) = {1 ; -1 ; 3 ;- 3}
Xét 4 trường hợp , ta có :
2n - 1 = 1 => n = 1
2n - 1 = -1 => n = 0
2n - 1 = 3 => n = 2
2n - 1 = -3 => n = -1
b) n2 + 2 chia hết cho n - 1
n . n - n + n + 2 chia hết cho n -1
n(n - 1) + n + 2 chia hết hoc n - 1
=> n + 2 chia hết cho n -1
=> n - 1 + 3 chia hết cho n - 1
=> 3 chia hết cho n -1
=> n - 1 thuộc Ư(3) = {1 ; -1; 3 ; -3}
Còn lại giống bài a
a) Từ giả thiếtta có thể đặt : \(n^2-1=3m\left(m+1\right)\) với m là 1 số nguyên dương
Biến đổi phương trình ta có :
\(\left(2n-1;2n+1\right)=1\) nên dẫn đến :
\(TH1:2n-1=3u^2;2n+1=v^2\)
\(TH2:2n-1=u^2;2n+1=3v^2\)
\(TH1:\)
\(\Rightarrow v^2-3u^2=2\)
\(\Rightarrow v^2=2\left(mod3\right)\)
Còn lại TH2 cho ta \(2n-1\) là số chính phương
b) Ta có :
\(\frac{n^2-1}{3}=k\left(k+1\right)\left(k\in N\right)\)
\(\Leftrightarrow n^2=3k^2+3k+1\)
\(\Leftrightarrow4n^2-1=12k^2+12k+3\)
\(\Leftrightarrow\left(2n-1\right)\left(2n+1\right)=3\left(2k+1\right)^2\)
- Xét 2 trường hợp :
\(TH1:\Rightarrow\hept{\begin{cases}2n-1=3p^2\\2n+1=3q\end{cases}}\)
\(TH2:\Rightarrow\hept{\begin{cases}2n-1=p^2\\2n+1=3q^2\end{cases}}\)
+) TH1 :
Hệ \(PT\Leftrightarrow q^2=3p^2+2=2\left(mod3\right)\) ( loại, vì số chính phương chia 3 dư 0 hoặc 1 )
+) TH2 :
Hệ \(PT\Leftrightarrow p=2a+1\Rightarrow2n=\left(2a+1\right)^2+1\Rightarrow n^2=a^2+\left(a+1\right)^2\) ( dpcm )
Ta có:
Số số hạng của tổng C là:
\(\left(n-1\right)\div1+1=n\) (số)
Tổng C là:
\(C=\frac{\left(n+1\right)n}{2}\) => \(2C=n\left(n+1\right)\)
Mà n là số tự nhiên => n(n+1) là tích 2 STN liên tiếp
=> đpcm
Số số hạng tập hợp B
\(\left(2n-2\right):2+1\)
\(=2\left(n-1\right):2+1\)
\(=n-1+1\)
\(=n\)
Tổng của B
\(=\left(2n+2\right)\cdot n:2\)
\(=2\left(n+1\right)\cdot n:2\)
\(=n\left(n+1\right)\)
Vậy B là tích hai số tự nhiên liên tiếp
Bài giải
\(B=2+4+6+...+2n=\frac{\left[\left(2n-2\right)\text{ : }2+1\right]\left(2n+2\right)}{2}=n\left(n+1\right)\) là tích của hai số tự nhiên liên tiếp
\(\Rightarrow\text{ ĐPCM}\)