K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2020

a) ( x2 + x )2 - 2( x2 + x ) - 15 (*)

Đặt t = x2 + x

(*) <=> t2 - 2t - 15 

      = t2 + 3t - 5t - 15

      = t( t + 3 ) - 5( t + 3 )

      = ( t + 3 )( t - 5 )

      = ( x2 + x + 3 )( x2 + x - 5 )

b) ( x2 + 2x )2 + 9x2 + 18x + 20

= ( x2 + 2x )2 + 9( x2 + 2x ) + 20 (*)

Đặt t = x2 + 2x

(*) <=> t2 + 9t + 20

       = t2 + 4t + 5t + 20

       = t( t + 4 ) + 5( t + 4 ) 

       = ( t + 4 )( t + 5 )

       = ( x2 + x + 4 )( x2 + x + 5 )

c) ( x2 + 3x + 1 )( x2 + 3x + 2 ) - 6 (*)

Đặt t = x2 + 3x + 1 

(*) <=> t( t + 1 ) - 6

      = t2 + t - 6

      = t2 - 2t + 3t - 6

      = t( t - 2 ) + 3( t - 2 )

      = ( t - 2 )( t + 3 )

      = ( x2 + 3x + 1 - 2 )( x2 + 3x + 1 + 3 )

      = ( x2 + 3x - 1 )( x2 + 3x + 4 )

d) ( x2 + 8x + 7 )( x + 3 )( x + 5 ) + 15

= ( x2 + 8x + 7 )( x2 + 8x + 15 ) + 15 (*)

Đặt t = x2 + 8x + 7

(*) <=> t( t + 8 ) + 15

       = t2 + 8t + 15

       = t2 + 3t + 5t + 15

       = t( t + 3 ) + 5( t + 3 )

       = ( t + 3 )( t + 5 )

       = ( x2 + 8x + 7 + 3 )( x2 + 8x + 7 + 5 )

       = ( x2 + 8x + 10 )( x2 + 8x + 12 )

27 tháng 9 2021

a) \(=x^4-14x^2+40-72=x^4-14x^2-32=\left(x-4\right)\left(x+4\right)\left(x^2+2\right)\)

b) \(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1=\left(x^2+5x\right)^2+2\left(x^2+5x\right)+1=\left(x^2+5x+1\right)^2\)

c) \(=x^4+3x^3-3x^2+3x^3+9x^2-9x+x^2+3x-3-5=x^4+6x^3+7x^2-6x-8=\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x+4\right)\)

a: Ta có: \(\left(x^2-4\right)\left(x^2-10\right)-72\)

\(=x^4-14x^2-32\)

\(=\left(x^2-16\right)\left(x^2+2\right)\)

\(=\left(x-4\right)\left(x+4\right)\left(x^2+2\right)\)

b: Ta có: \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)

\(=\left(x^2+5x+6\right)\left(x^2+5x+4\right)+1\)

\(=\left(x^2+5x\right)^2+10\left(x^2+5x\right)+24+1\)

\(=\left(x^2+5x+1\right)^2\)

9 tháng 12 2023

Bài 3

a) x² + 10x + 25

= x² + 2.x.5 + 5²

= (x + 5)²

b) 8x - 16 - x²

= -(x² - 8x + 16)

= -(x² - 2.x.4 + 4²)

= -(x - 4)²

c) x³ + 3x² + 3x + 1

= x³ + 3.x².1 + 3.x.1² + 1³

= (x + 1)³

d) (x + y)² - 9x²

= (x + y)² - (3x)²

= (x + y - 3x)(x + y + 3x)

= (y - 2x)(4x + y)

e) (x + 5)² - (2x - 1)²

= (x + 5 - 2x + 1)(x + 5 + 2x - 1)

= (6 - x)(3x + 4)

9 tháng 12 2023

Bài 4

a) x² - 9 = 0

x² = 9

x = 3 hoặc x = -3

b) (x - 4)² - 36 = 0

(x - 4 - 6)(x - 4 + 6) = 0

(x - 10)(x + 2) = 0

x - 10 = 0 hoặc x + 2 = 0

*) x - 10 = 0

x = 10

*) x + 2 = 0

x = -2

Vậy x = -2; x = 10

c) x² - 10x = -25

x² - 10x + 25 = 0

(x - 5)² = 0

x - 5 = 0

x = 5

d) x² + 5x + 6 = 0

x² + 2x + 3x + 6 = 0

(x² + 2x) + (3x + 6) = 0

x(x + 2) + 3(x + 2) = 0

(x + 2)(x + 3) = 0

x + 2 = 0 hoặc x + 3 = 0

*) x + 2 = 0

x = -2

*) x + 3 = 0

x = -3

Vậy x = -3; x = -2

28 tháng 5 2022

:) bóc lột !

DD
28 tháng 5 2022

Câu 1: 

a) 2x(3x+2) - 3x(2x+3) = 6x^2+4x - 6x^2-9x = -5x

b) \(\left(x+2\right)^3+\left(x-3\right)^2-x^2\left(x+5\right)\)

\(=x^3+6x^2+12x+8+x^2-6x+9-x^3-5x^2\)

\(=2x^2+6x+17\)

c) \(\left(3x^3-4x^2+6x\right)\div\left(3x\right)=x^2-\dfrac{4}{3}x+2\)

28 tháng 6 2021

Chia nhỏ ra cậu ơi :v

Cậu đặt câu hỏi free nên đặt nhỏ ra thì mới có người làm nha để như này dày cộp không ai dám làm đou =(((

28 tháng 6 2021

cảm ơn nhé

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

a. 

$x^2-y^2-2x+2y=(x^2-y^2)-(2x-2y)=(x-y)(x+y)-2(x-y)=(x-y)(x+y-2)$

b.

$x^2(x-1)+16(1-x)=x^2(x-1)-16(x-1)=(x-1)(x^2-16)=(x-1)(x-4)(x+4)$

c.

$x^2+4x-y^2+4=(x^2+4x+4)-y^2=(x+2)^2-y^2=(x+2-y)(x+2+y)$

d.

$x^3-3x^2-3x+1=(x^3+1)-(3x^2+3x)=(x+1)(x^2-x+1)-3x(x+1)$

$=(x+1)(x^2-4x+1)$

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

e.

$x^4+4y^4=(x^2)^2+(2y^2)^2+2.x^2.2y^2-4x^2y^2$

$=(x^2+2y^2)^2-(2xy)^2=(x^2+2y^2-2xy)(x^2+2y^2+2xy)$

f.

$x^4-13x^2+36=(x^4-4x^2)-(9x^2-36)$

$=x^2(x^2-4)-9(x^2-4)=(x^2-9)(x^2-4)=(x-3)(x+3)(x-2)(x+2)$

g.

$(x^2+x)^2+4x^2+4x-12=(x^2+x)^2+4(x^2+x)-12$

$=(x^2+x)^2-2(x^2+x)+6(x^2+x)-12$

$=(x^2+x)(x^2+x-2)+6(x^2+x-2)=(x^2+x-2)(x^2+x+6)$

$=[x(x-1)+2(x-1)](x^2+x+6)=(x-1)(x+2)(x^2+x+6)$

h.

$x^6+2x^5+x^4-2x^3-2x^2+1$

$=(x^6+2x^5+x^4)-(2x^3+2x^2)+1$

$=(x^3+x^2)^2-2(x^3+x^2)+1=(x^3+x^2-1)^2$

11 tháng 8 2021

a/ \(\left(x+y\right)^2-8\left(x+y\right)+12\)

\(=\left(x+y\right)\left(x+y-8+12\right)\)

\(=\left(x+y\right)\left(x+y+4\right)\)

==========

b/\(\left(x^2+2x\right)^2-2x^2-4x-3\)

\(=\left(x^2+2x\right)^2-\left(2x^2+4x\right)-3\)

\(=\left(x^2+2x\right)^2-2\left(x^2+2x\right)-3\)

\(=\left(x^2+2x\right)\left(x^2+2x-5\right)\)

===========

c/ \(\left(x^2+x\right)^2-2\left(x^2+x\right)-15\)

\(=\left(x^2+x\right)\left(x^2+x-2-15\right)\)

\(=\left(x^2+x\right)\left(x^2+x-17\right)\)

[---]

5 tháng 9 2021

\(a,9x^2+y^2+2z^2-18x+4z-6y+20=0\\ \Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)

\(b,5x^2+5y^2+8xy+2y-2x+2=0\\ \Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

\(c,5x^2+2y^2+4xy-2x+4y+5=0\\ \Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x=-y\\x=1\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

\(d,x^2+4y^2+z^2=2x+12y-4z-14\\ \Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\z=-2\end{matrix}\right.\)

\(e,x^2+y^2-6x+4y+2=0\\ \Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)

Pt vô nghiệm do ko có 2 bình phương số nguyên có tổng là 11

 

 

e: Ta có: \(x^2-6x+y^2+4y+2=0\)

\(\Leftrightarrow x^2-6x+9+y^2+4y+4-11=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)

Dấu '=' xảy ra khi x=3 và y=-2

25 tháng 10 2021

a) \(3x\left(2x-y\right)+5y\left(y-2x\right)\)

\(=3x\left(2x-y\right)-5y\left(2x-y\right)\)

\(=\left(3x-5y\right)\left(2x-y\right)\)

b) \(\left(x-5\right)^2-9\left(x+y\right)^2\)

\(=\left(x-5\right)^2-3^2\left(x+y\right)^2\)

\(=\left(x-5\right)^2-\left(3x+3y\right)^2\)

\(=\left(x-5+3x+3y\right)\left(x-5-3x-3y\right)\)

\(=\left(4x+3y-5\right)\left(-2x-3y-5\right)\)

25 tháng 10 2021

a: \(3x\left(2x-y\right)+5y\left(y-2x\right)=\left(2x-y\right)\left(3x-5y\right)\)

e: \(x^2-10x+24=\left(x-4\right)\left(x-6\right)\)