K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài làm :

\(\left(9x-2\right)\left(x^2-5x+1\right)-x\left(x^2+11\right)\)

\(=9x^3-45x^2+9x-2x^2+10x-2-x^3-11x\)

\(=\left(9x^3-x^3\right)+\left(-45x^2-2x^2\right)+\left(9x+10x-11x\right)-2\)

\(=8x^3-47x^2+8x-2\)

Học tốt nhé

21 tháng 9 2020

( 9x - 2 )( x2 - 5x + 1 ) - x( x2 + 11 )

= 9x3 - 45x2 + 9x - 2x2 + 10x - 2 - x3 - 11x

= 8x3 - 47x2 + 8x - 2

16 tháng 12 2022

f: \(=\dfrac{5x-3-x+3}{4x^2y}=\dfrac{4x}{4x^2y}=\dfrac{1}{xy}\)

g: \(=\dfrac{3x+10-x-4}{x+3}=\dfrac{2x+6}{x+3}=2\)

h: \(=\dfrac{4-2+x}{x-1}=\dfrac{x+2}{x-1}\)

n: \(=\dfrac{3x-x+6}{x\left(x+3\right)}=\dfrac{2\left(x+3\right)}{x\left(x+3\right)}=\dfrac{2}{x}\)

p: \(=\dfrac{x^2-9-x^2+9}{x\left(x-3\right)}=0\)

k: \(=\dfrac{x-2x-4+x-2}{\left(x+2\right)\left(x-2\right)}=\dfrac{-6}{x^2-4}\)

m: \(=\dfrac{3x-x+6}{x\left(2x+6\right)}=\dfrac{2x+6}{x\left(2x+6\right)}=\dfrac{1}{x}\)

18 tháng 4 2021

a, ĐK : \(x\ne1;2;3;4;5\)

b, \(\dfrac{1}{x\left(x-1\right)}+\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-2\right)\left(x-3\right)}+\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-4\right)\left(x-5\right)}\)

\(=\dfrac{1}{x}-\dfrac{1}{x-1}+\dfrac{1}{x-1}-\dfrac{1}{x-2}+\dfrac{1}{x-2}-\dfrac{1}{x-3}+\dfrac{1}{x-3}-\dfrac{1}{x-4}+\dfrac{1}{x-4}-\dfrac{1}{x-5}\)

\(=\dfrac{1}{x}-\dfrac{1}{x-5}=\dfrac{x-5-x}{x\left(x-5\right)}=\dfrac{-5}{x\left(x-5\right)}\)

a: ĐKXĐ: \(x\notin\left\{0;1;2;3;4;5\right\}\)

b: \(P=\dfrac{1}{\left(x-1\right)\cdot x}+\dfrac{1}{\left(x-2\right)\left(x-1\right)}+\dfrac{1}{\left(x-2\right)\left(x-3\right)}+\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-4\right)\left(x-5\right)}\)

\(=\dfrac{1}{x-1}-\dfrac{1}{x}+\dfrac{1}{x-2}-\dfrac{1}{x-1}+\dfrac{1}{x-3}-\dfrac{1}{x-2}+\dfrac{1}{x-4}-\dfrac{1}{x-3}+\dfrac{1}{x-5}-\dfrac{1}{x-4}\)

\(=\dfrac{1}{x-5}-\dfrac{1}{x}=\dfrac{x-x+5}{x\left(x-5\right)}=\dfrac{5}{x\left(x-5\right)}\)

26 tháng 11 2017

M = 1/(x+1).(x+2) + 1/(x+2).(x+3) + 1/(x+3).(x+4) + 1/(x+4).(x+5) + 1/x+5

    = 1/x+1 - 1/x+2 + 1/x+2 - 1/x+3 + 1/x+3 - 1/x+4 + 1/x+4 - 1/x+5 + 1/x+5 = 1/x+1

k mk nha

26 tháng 5 2023

\(a,3x\left(x-2\right)-5x\left(1-x\right)-8\left(x^2-3\right)\)

\(=3x^2-6x-5x+5x^2-8x^2+24\)

\(=\left(3x^2+5x^2-8x^2\right)+\left(-6x-5x\right)+24\)

\(=0-11x+24\)

\(=-11x+24\)

\(b,\left(7x-3\right)\left(2x+1\right)-\left(5x-2\right)\left(x+4\right)-9x^2+17x\)

\(=14x^2+7x-6x-3-5x^2-20x+2x+8-9x^2+17x\)

\(=\left(14x^2-5x^2-9x^2\right)+\left(7x-6x-20x+2x+17x\right)+\left(-3+8\right)\)

\(=0+0+5\)

\(=5\)

17 tháng 11 2023

a: ĐKXĐ: \(x\notin\left\{0;1;2;3;4;5\right\}\)

b: \(P=\dfrac{1}{x^2-x}+\dfrac{1}{x^2-3x+2}+\dfrac{1}{x^2-5x+6}+\dfrac{1}{x^2-7x+12}+\dfrac{1}{x^2-9x+20}\)

\(=\dfrac{1}{x\left(x-1\right)}+\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-2\right)\left(x-3\right)}+\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-4\right)\left(x-5\right)}\)

\(=\dfrac{-1}{x}+\dfrac{1}{x-1}-\dfrac{1}{x-1}+\dfrac{1}{x-2}-\dfrac{1}{x-2}+\dfrac{1}{x-3}-\dfrac{1}{x-3}+\dfrac{1}{x-4}-\dfrac{1}{x-4}+\dfrac{1}{x-5}\)

\(=\dfrac{1}{x-5}-\dfrac{1}{x}\)

\(=\dfrac{x-\left(x-5\right)}{x\left(x-5\right)}=\dfrac{5}{x\left(x-5\right)}\)

c: \(x^3-x^2+2=0\)

=>\(x^3+x^2-2x^2+2=0\)

=>\(x^2\cdot\left(x+1\right)-2\left(x-1\right)\left(x+1\right)=0\)

=>\(\left(x+1\right)\left(x^2-2x+2\right)=0\)

=>x+1=0

=>x=-1

Khi x=-1 thì \(P=\dfrac{5}{\left(-1\right)\left(-1-5\right)}=\dfrac{5}{\left(-1\right)\cdot\left(-6\right)}=\dfrac{5}{6}\)

2 tháng 10 2021

Bài 2: Tính giá trị của biểu thức sau:

\(16x^2-y^2=\left(4x+y\right)\left(4x-y\right)\)

Thay \(\hept{\begin{cases}x=87\\y=13\end{cases}}\)

\(\Rightarrow\left(4.87+13\right)\left(4.87-13\right)=361.335=120935\)

2 tháng 10 2021

Bài 4: Tìm x

a) \(9x^2+x=0\)

\(\Rightarrow x\left(9x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\9x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{-1}{9}\end{cases}}\)

b) \(27x^3+x=0\)

\(\Rightarrow x\left(27x^2+1=0\right)\)

\(\Rightarrow\orbr{\begin{cases}x=0\\27x^2+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\27x^2=\left(-1\right)\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x^2=\frac{-1}{27}\end{cases}}\)

Ta có: \(\frac{-1}{27}\) loại vì \(x^2\ge0\forall x\)

Vậy \(x=0\)

12 tháng 8 2021

Trả lời:

a,  \(ĐK:x\ne\frac{1}{3}\)

 \(A=\frac{3x+1-1}{1-3x}:\frac{3x-9x^2}{3x-1}=\frac{3x}{1-3x}\cdot\frac{3x-1}{3x-9x^2}=\frac{3x.\left(3x-1\right)}{\left(1-3x\right)\left(3x-9x^2\right)}=\frac{3x\left(3x-1\right)}{\left(1-3x\right)3x\left(1-3x\right)}\)

\(=\frac{3x\left(3x-1\right)}{3x\left(1-3x\right)^2}=\frac{3x\left(3x-1\right)}{3x\left(3x-1\right)^2}=\frac{1}{3x-1}\)

b, \(5x^2+3x=0\)

\(\Leftrightarrow x\left(5x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\5x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{3}{5}\end{cases}}}\)

Thay x = 0 vào A, ta có :

\(A=\frac{1}{3.0-1}=\frac{1}{-1}=-1\)

Thay x = - 3/5 vào A, ta có :

\(A=\frac{1}{3.\left(-\frac{3}{5}\right)-1}=\frac{1}{-\frac{9}{5}-1}=\frac{1}{-\frac{14}{5}}=-\frac{5}{14}\)

c, \(A=\frac{x}{x-1}\)

\(\Leftrightarrow\frac{1}{3x-1}=\frac{x}{x-1}\)\(\left(ĐK:x\ne\frac{1}{3};x\ne1\right)\)

\(\Leftrightarrow\frac{x-1}{\left(3x-1\right)\left(x-1\right)}=\frac{x\left(3x-1\right)}{\left(3x-1\right)\left(x-1\right)}\)

\(\Rightarrow x-1=3x^2-x\)

\(\Leftrightarrow3x^2-x-x+1=0\)

\(\Leftrightarrow3x^2-2x+1=0\)

\(\Leftrightarrow3\left(x^2-\frac{2}{3}x+\frac{1}{3}\right)=0\)

\(\Leftrightarrow x^2-\frac{2}{3}x+\frac{1}{3}=0\)

\(\Leftrightarrow x^2-2.x.\frac{1}{3}+\frac{1}{9}+\frac{2}{9}=0\)

\(\Leftrightarrow\left(x-\frac{1}{3}\right)^2+\frac{2}{9}=0\)

\(\Leftrightarrow\left(x-\frac{1}{3}\right)^2=-\frac{2}{9}\) (vô lí)

Vậy không tìm được x thỏa mãn đề bài.

d, \(\frac{6}{A}=\frac{6}{\frac{1}{3x-1}}=6\left(3x-1\right)=18x-6\)

Vậy x thuộc Z thì 6/A thuộc Z

NM
12 tháng 8 2021

\(A=\left(3x+1-\frac{1}{1-3x}\right):\left(\frac{3x-9x^2}{3x-1}\right)=\left(\frac{1-9x^2-1}{1-3x}\right):\left(\frac{3x\left(1-3x\right)}{3x-1}\right)=-\frac{9x}{1-3x}:\left(-3x\right)=\frac{3}{1-3x}\)

b. Với \(5x^2+3x=0\Leftrightarrow x\left(5x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{3}{5}\end{cases}}\) nhưng mà ở trên ta cần có điều kiện x#0 nên

\(x=-\frac{3}{5}\Rightarrow A=\frac{3}{1-3\times\left(-\frac{3}{5}\right)}=\frac{15}{14}\)

c.\(A=\frac{x}{x-1}=\frac{3}{1-3x}\Leftrightarrow x-3x^2=3x-3\Leftrightarrow3x^2+2x-3=0\Leftrightarrow x=\frac{-1\pm\sqrt{10}}{3}\)

d.\(\frac{6}{A}=2\times\left(1-3x\right)\) nguyên nên \(1-3x=-\frac{k}{2}\Leftrightarrow x=\frac{k+2}{6}\) với k là số nguyên