K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2x +\(\frac{2}{3}\)< 2 + x -\(\frac{2}{2}\)

<=> 2x - x < 2 - \(\frac{2}{2}\)-\(\frac{2}{3}\)

<=> x < 2 -\(\frac{6}{6}\)-\(\frac{4}{6}\)

<=> x < 2 -\(\frac{2}{6}\)

<=> x < 2 - \(\frac{1}{3}\)

<=> x <\(\frac{5}{3}\)

#Học tốt!!!

~NTTH~

20 tháng 9 2020

\(\frac{2x+2}{3}< 2+\frac{x-2}{2}\)

<=> \(\frac{2\left(2x+2\right)}{6}< \frac{12}{6}+\frac{3\left(x-2\right)}{6}\)

<=> \(\frac{4x+4}{6}< \frac{12}{6}+\frac{3x-6}{6}\)

Khử mẫu

<=> 4x + 4 < 12 + 3x - 6

<=> 4x - 3x < 12 - 6 - 4

<=> x < 2

Vậy nghiệm của bất phương trình là x < 2

Bài 3: 

b: \(\Leftrightarrow x^2\left(x+1\right)^2=0\)

hay \(x\in\left\{0;-1\right\}\)

c: \(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=0\)

=>x-1=0

hay x=1

d: \(\Leftrightarrow6x^2-3x-4x+2=0\)

\(\Leftrightarrow\left(2x-1\right)\left(3x-2\right)=0\)

hay \(x\in\left\{\dfrac{1}{2};\dfrac{2}{3}\right\}\)

27 tháng 7 2016

\(x^2+2\left(x+1\right)^2+3\left(x+2\right)^2+4\left(x+3\right)^2=0\)

\(\Rightarrow x^2+2\left(x^2+2x+1\right)+3\left(x^2+4+4x\right)+4\left(x^2+6x+9\right)=0\)

\(\Rightarrow x^2+2x^2+4x+2+3x^2+12+12x+4x^2+24x+36=0\)

\(\Rightarrow10x^2+40x+50=0\)

\(\Rightarrow10\left(x^2+4x+5\right)=0\)

\(\Rightarrow x^2+4x+5=0\)

\(\Rightarrow\left(x^2+4x+2\right)+3=0\)

\(\Rightarrow\left(x+2\right)^2=-3\)

Mà \(\left(x+2\right)^2\ge0\)với mọi \(x\)

Vậy...

27 tháng 7 2016

nk bạn chỗ cuối phải là \(\left(x+2\right)^2=-1\) chứ

11 tháng 4 2022

lx

11 tháng 4 2022

lỗi r bn

a: =>(x^2+x)^2-2(x^2+x)+(x^2+x)-2=0

=>(x^2+x-2)(x^2+x+1)=0

=>(x+2)(x-1)=0

=>x=-2 hoặc x=1

b: ĐKXĐ: x<>4; x<>1

PT =>\(\dfrac{x+3+3x-12}{x-4}=\dfrac{6}{1-x}\)

=>(4x-9)(1-x)=6(x-4)

=>4x-4x^2-9+9x=6x-24

=>-4x^2+13x-9-6x+24=0

=>-4x^2+7x+15=0

=>x=3(nhận) hoặc x=-5/4(nhận)

AH
Akai Haruma
Giáo viên
29 tháng 4 2023

Bài 1: ĐKXĐ: $2\leq x\leq 4$
PT $\Leftrightarrow (\sqrt{x-2}+\sqrt{4-x})^2=2$

$\Leftrightarrow 2+2\sqrt{(x-2)(4-x)}=2$
$\Leftrightarrow (x-2)(4-x)=0$

$\Leftrightarrow x-2=0$ hoặc $4-x=0$

$\Leftrightarrow x=2$ hoặc $x=4$ (tm)

AH
Akai Haruma
Giáo viên
29 tháng 4 2023

Bài 2:
PT $\Leftrightarrow 4x^3(x-1)-3x^2(x-1)+6x(x-1)-4(x-1)=0$

$\Leftrightarrow (x-1)(4x^3-3x^2+6x-4)=0$
$\Leftrightarrow x=1$ hoặc $4x^3-3x^2+6x-4=0$

Với $4x^3-3x^2+6x-4=0(*)$

Đặt $x=t+\frac{1}{4}$ thì pt $(*)$ trở thành:
$4t^3+\frac{21}{4}t-\frac{21}{8}=0$

Đặt $t=m-\frac{7}{16m}$ thì pt trở thành:

$4m^3-\frac{343}{1024m^3}-\frac{21}{8}=0$
$\Leftrightarrow 4096m^6-2688m^3-343=0$

Coi đây là pt bậc 2 ẩn $m^3$ và giải ta thu được \(m=\frac{\sqrt[3]{49}}{4}\) hoặc \(m=\frac{-\sqrt[3]{7}}{4}\)

Khi đó ta thu được \(x=\frac{1}{4}(1-\sqrt[3]{7}+\sqrt[3]{49})\)

 

31 tháng 10 2016

Bài 1:

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:

\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)

\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc

\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)

1 tháng 11 2016

Câu 3: ĐK: \(x\ge0\)

Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)

Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)

\(\Rightarrow2x-4\sqrt{x-1}=0\)

Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)

22 tháng 8 2023

1) \(3^x+3^{x+1}+3^{x+2}=351\)

\(\Rightarrow3^x\left(1+3^1+3^2\right)=351\)

\(\Rightarrow3^x.13=351\)

\(\Rightarrow3^x=27\)

\(\Rightarrow3^x=3^3\)

\(\Rightarrow x=3\)

2) \(C=2+2^2+2^3+2^4+...+2^{97}+2^{98}+2^{99}+2^{100}\)

\(\Rightarrow C=\left(2+2^2+2^3+2^4\right)+2^4\left(2+2^2+2^3+2^4\right)...+2^{96}\left(2+2^2+2^3+2^4\right)\)

\(\Rightarrow C=30+2^4.30...+2^{96}.30\)

\(\Rightarrow C=\left(1+2^4+...+2^{96}\right).30⋮30\)

mà \(30=5.6\)

\(\Rightarrow C⋮5\left(dpcm\right)\)

22 tháng 8 2023

1,

Có \(3^x\)\(3^{x+1}\) + \(3^{x+2}\) = \(351\)

=> \(3^x\) + \(3^x\).\(3\) + \(3^x\).\(9\) = \(351\)

=> \(3^x\).\(13\) = \(351\)

=> \(3^x\) = \(27\)

=> \(x\) = \(3\)

2,

C = \(2\) + \(2^2\) + \(2^3\) + ... + \(2^{100}\)

2C = \(2^2\) + \(2^3\) + \(2^4\) + ... + \(2^{101}\)

2C - C = \(2^{101}\) - \(2\)

C = \(2^{101}\) - \(2\)

C = \(2\).\(\left(2^{100}-1\right)\)

C = 2.\(\left(\left(2^5\right)^{20}-1^{20}\right)\)

Có \(2^5\) \(-1\) \(⋮\) 5

=> \(\left(\left(2^5\right)^{20}-1^{20}\right)\) \(⋮\) 5

=> C \(⋮\) 5

3,

Xét \(\overline{abcdeg}\)

\(\overline{ab}\).\(10000\) + \(\overline{cd}\).\(100\) + \(\overline{eg}\)

\(\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\) + \(9.\left(1111.\overline{ab}+11.\overline{cd}\right)\)

\(\left\{{}\begin{matrix}9.\left(1111.\overline{ab}+11.\overline{cd}\right)⋮9\left(1111.\overline{ab}+11.\overline{cd}\inℕ^∗\right)\\\overline{ab}+\overline{cd}+\overline{eg}⋮9\end{matrix}\right.\)

=> \(\overline{abcdeg}⋮9\)

4,

S = \(3^0+3^2+3^4+...+3^{2002}\)

9S = \(3^2+3^4+3^6+...+3^{2004}\)

9S - S = \(3^2+3^4+3^6+...+3^{2004}\) - (\(3^0+3^2+3^4+...+3^{2002}\))

8S = \(3^{2004}-1\)

=> 8S \(< 3^{2004}\)

17 tháng 7 2023

2b. ĐKXĐ : \(x\ge-5\) (*)

Ta có \(\sqrt{x+5}=x^2-5\)

\(\Leftrightarrow4x^2-20-4\sqrt{x+5}=0\)

\(\Leftrightarrow4x^2+4x+1-4.\left(x+5\right)-4\sqrt{x+5}-1=0\)

\(\Leftrightarrow\left(2x+1\right)^2-\left(2\sqrt{x+5}+1\right)^2=0\)

\(\Leftrightarrow\left(x+1+\sqrt{x+5}\right)\left(x-\sqrt{x+5}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=-\sqrt{x+5}\left(1\right)\\x=\sqrt{x+5}\left(2\right)\end{matrix}\right.\)

Giải (1) có (1) \(\Leftrightarrow\left(x+1\right)^2=x+5\)  ;  ĐK: \(\left(x\le-1\right)\)

\(\Leftrightarrow x^2+x-4=0\Leftrightarrow x=\dfrac{-1\pm\sqrt{17}}{2}\) 

Kết hợp (*) và ĐK được \(x=\dfrac{-1-\sqrt{17}}{2}\) là nghiệm phương trình gốc

Giải (2) có (2) <=> \(x^2-x-5=0\) ; ĐK : \(x\ge0\)

\(\Leftrightarrow x=\dfrac{1\pm\sqrt{21}}{2}\)

Kết hợp (*) và ĐK được \(x=\dfrac{1+\sqrt{21}}{2}\) là nghiệm phương trình gốc

Tập nghiệm \(S=\left\{\dfrac{-1-\sqrt{17}}{2};\dfrac{1+\sqrt{21}}{2}\right\}\)

17 tháng 7 2023

2c. ĐKXĐ \(x\ge1\) (*)

Đặt \(\sqrt{x-1}=a;\sqrt[3]{2-x}=b\left(a\ge0\right)\) (1) 

Ta có \(\sqrt{x-1}-\sqrt[3]{2-x}=5\Leftrightarrow a-b=5\)

Từ (1) có \(a^2+b^3=1\) (2)

Thế a = b + 5 vào (2) ta được 

\(b^3+\left(b+5\right)^2=1\Leftrightarrow b^3+b^2+10b+24=0\)

\(\Leftrightarrow b^3+8+b^2+10b+16=0\)

\(\Leftrightarrow\left(b+2\right).\left(b^2-b+12\right)=0\)

\(\Leftrightarrow b=-2\) (Vì \(b^2-b+12=\left(b-\dfrac{1}{2}\right)^2+\dfrac{47}{4}>0\forall b\)

Với b = -2 \(\Leftrightarrow\sqrt[3]{2-x}=-2\Leftrightarrow x=10\) (tm) 

Tập nghiệm \(S=\left\{10\right\}\)