(Nghi binh 20/09)
Cho \(a_1,a_2,...,a_n>0;3\le n\in N.\) Đặt:
\(A_1=\frac{a_1}{a_2+a_3}+\frac{a_2}{a_3+a_4}+...+\frac{a_{n-1}}{a_n+a_1}+\frac{a_n}{a_1+a_2}\)
\(A_2=\frac{a_1}{a_n+a_2}+\frac{a_2}{a_1+a_3}+...+\frac{a_{n-1}}{a_{n-2}+a_n}+\frac{a_n}{a_{n-1}+a_1}\)
Chứng minh rằng: \(Max\left\{A_1,A_2\right\}\ge\frac{n}{2}\)