K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(8x^2+30x+7\)

\(=8x^2+28x+2x+7\)

\(=4x\left(2x+7\right)+\left(2x+7\right)\)

\(=\left(2x+7\right)\left(4x+1\right)\)

b) Ta có: \(4x^3-12x^2+9x\)

\(=x\left(4x^2-12x+9\right)\)

\(=x\left(2x-3\right)^2\)

c) Ta có: \(\left(2x+1\right)^2-\left(x-1\right)^2\)

\(=\left(2x+1-x+1\right)\left(2x+1+x-1\right)\)

\(=\left(x+2\right)\cdot3x\)

d) Ta có: \(ab+c^2-ac-bc\)

\(=\left(ab-bc\right)+\left(c^2-ac\right)\)

\(=b\left(a-c\right)+c\left(c-a\right)\)

\(=b\left(a-c\right)-c\left(a-c\right)\)

\(=\left(a-c\right)\left(b-c\right)\)

e) Ta có: \(4x^2-y^2+1-4x\)

\(=\left(4x^2-4x+1\right)-y^2\)

\(=\left(2x-1\right)^2-y^2\)

\(=\left(2x-1-y\right)\left(2x-1+y\right)\)

f) Ta có: \(6x^2-7x-20\)

\(=6x^2-15x+8x-20\)

\(=3x\left(2x-5\right)+4\left(2x-5\right)\)

\(=\left(2x-5\right)\left(3x+4\right)\)

16 tháng 2 2021

\(4x^3-12x^2+9x=x\left(4x^2-12x+9\right)=x\left(2x-3\right)^2\)\(\left(2x+1\right)^2-\left(x-1\right)^2=\left(2x+1-x+1\right)\left(2x+1+x-1\right)=\left(x+2\right)3x\)

\(ab+c^2-ac-bc=ab-ac-bc+c^2=a\left(b-c\right)-c\left(b-c\right)=\left(b-c\right)\left(a-c\right)\)

\(4x^2-y^2+1-4x=4x^2-4x+1-y^2=\left(2x-1\right)^2-y^2=\left(2x-y-1\right)\left(2x+y-1\right)\)

\(6x^2-7x-20=6x^2-15x+8x-20=3x\left(2x-5\right)+4\left(2x-5\right)=\left(2x-5\right)\left(3x+4\right)\)

\(8x^2+30x+7=8x^2+2x+28x+7=2x\left(4x+1\right)+7\left(4x+1\right)=\left(4x+1\right)\left(2x+7\right)\)

12 tháng 5 2016

vế phải đâu

12 tháng 5 2016

phân tích đa thức thành nhân tử nên không có vế phải bạn ơi

AH
Akai Haruma
Giáo viên
9 tháng 1

Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo để mọi người hiểu đề của bạn hơn nhé.

5 tháng 3 2021

\(=\lim\limits_{x\rightarrow3}\dfrac{\sqrt{3+2x}-3-\sqrt{7-x}+2}{2x-6}\)

\(=\lim\limits_{x\rightarrow3}\left(\dfrac{2x-6}{\left(2x-6\right)\left(\sqrt{3+2x}+3\right)}-\dfrac{3-x}{\left(2x-6\right)\left(\sqrt{7-x}+2\right)}\right)\)

\(=\dfrac{1}{\sqrt{3+2\cdot3}+3}+\dfrac{1}{2\cdot\left(\sqrt{7-3}+2\right)}=\dfrac{7}{24}\)

5 tháng 3 2021

dễ thấy hàm số có dạng 0/0

áp dụng l'hospital

\(\lim\limits_{x\rightarrow3}\dfrac{\sqrt{3+2x}-\sqrt{7-x}-1}{2x-6}\\ =\lim\limits_{x\rightarrow3}\dfrac{\left(\sqrt{3+2x}-\sqrt{7-x}-1\right)'}{\left(2x-6\right)'}=\lim\limits_{x\rightarrow3}\dfrac{\dfrac{2}{2\sqrt{3+2x}}+\dfrac{1}{2\sqrt{7-x}}}{2}=\dfrac{7}{24}\)

 

25 tháng 1 2020

b) \(\sqrt{2x-3}-7=4\)

             \(\sqrt{2x-3}=11\)

     \(\left(\sqrt{2x-3}\right)^2=11^2\)

                   \(2x-3=121\)

                            \(2x=124\)

                              \(x=62\)

c) \(\sqrt{3x-2}+7=0\)

             \(\sqrt{3x-2}=-7\)

                          \(\Rightarrow x=\varnothing\)

29 tháng 1 2020

bạn Hoàng Thanh Huyền ơi! cảm ơn đã là giúp nhưng phần a) bạn làm đến dong thứ 3 thì mk bt làm r nhưng mũ 2 phải chia ra hai trường hợp chứ :))