K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2020

B = sin^2 1 + sin^2 89 + sin^2 2 + sin^2 88 + ... + sin^2 45 

= sin^2 1 + cos^2 1 + sin^2 2 + cos^2 2 + ... + sin^2 45 

= 1 + 1 + ... + sin^2 45 

= 44 + 1/2 

= 89/2

6 tháng 7 2019

a) Ta có: \(\sin^2a^o=\cos^2\left(90^o-a^o\right)\)

Biểu thức trên

\(=\left(\sin^21^o+\sin^o89\right)+\left(\sin^22^o+\sin^288^o\right)+...+\left(\sin^244^o+\sin^246^o\right)+\sin^245^o\)

\(=\left(\sin^21^o+\cos^21^o\right)+\left(\sin^22^o+\cos^22^o\right)+...+\left(\sin^244^o+\cos^246^o\right)+\sin^245^o\)

\(=1+1+..+1+\sin^245^o=44+\frac{1}{2}=\frac{89}{2}\)

b) 

Ta có: \(\sin^2x+\cos^2x=1\)

\(0^o< x< 90^o\)

=> \(0< \sin x;\cos x< 1\)

Ta có:  \(\frac{\sin^2x+\cos^2x}{\text{​​}\text{​​}\sin x.\cos x}=\frac{1}{\frac{12}{25}}=\frac{25}{12}\Leftrightarrow\frac{\sin x}{\cos x}+\frac{\cos x}{\sin x}=\frac{25}{12}\)

\(\Leftrightarrow\tan x+\frac{1}{\tan x}=\frac{25}{12}\Leftrightarrow\tan^2x-\frac{25}{12}\tan x+1=0\)

Đặt t =tan x => có phương trình bậc 2 ẩn t => Giải đen ta => ra đc t => ra đc tan t

\(\Leftrightarrow\orbr{\begin{cases}\tan x=\frac{3}{4}\\\tan x=\frac{4}{3}\end{cases}}\)

16 tháng 7 2016

tương tự

30 tháng 12 2019

\(=\left(sin^21^o+sin^289^o\right)+\left(sin^22^o+sin^288^o\right)+...+\left(sin^244^o+sin^246^o\right)+sin^245^o\)

\(=\left(sin^21^o+cos^21^o\right)+\left(sin^22^o+cos^22^o\right)+...+\left(sin^244^o+cos^244^o\right)+\left(\frac{\sqrt{2}}{2}\right)^2\)

\(=1+1+...+1+\frac{1}{2}\) ( 44 số hạng 1 )

\(=44+\frac{1}{2}=\frac{89}{2}\)

27 tháng 10 2017

sử dụng 2 góc phụ nhau nha

vd: sin1=cos89

9 tháng 7 2016

(sin 1 độ + sin 2 độ + ... + sin 89 độ) - (cos 1 độ + cos 2 độ + ... + cos 89 độ)

=(cos 89 độ +... + cos 2 độ +cos 1 độ) - (cos 1 độ + cos 2 độ + ... + cos 89 độ)

=0

20 tháng 5 2021

.jkilfo,o7m5ijk

15 tháng 6 2021

 Ta có \sin 5\alpha -2\sin \alpha \left({\cos} 4\alpha +\cos 2\alpha \right)=\sin 5\alpha -2\sin \alpha .\cos 4\alpha -2\sin \alpha .\cos 2\alphasin5α2sinα(cos4α+cos2α)=sin5α2sinα.cos4α2sinα.cos2α

=\sin 5\alpha -\left(\sin 5\alpha -\sin 3\alpha \right)-\left(\sin 3\alpha -\sin \alpha \right)=sin5α(sin5αsin3α)(sin3αsinα)

=\sin \alpha .=sinα.

Vậy \sin 5\alpha -2\sin \alpha \left({\cos} 4\alpha +\cos 2\alpha \right)=\sin \alphasin5α2sinα(cos4α+cos2α)=sinα

a: \(A=sin^210^0+sin^280^0+cos^220^0+sin^270^0\)

\(=sin^210^0+cos^210^0+sin^270^0+sin^270^0\)

\(=2\cdot sin^270^0+1\)

b: \(=sin^215^0+sin^275^0+sin^235^0+sin^255^0\)

\(=sin^215^0+cos^215^0+sin^235^0+cos^235^0\)

=1+1

=2