K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABD và ΔAED có

AB=AE

\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔABD=ΔAED

Suy ra: \(\widehat{ABD}=\widehat{AED}\)

b: Xét ΔDBF và ΔDEC có 

\(\widehat{FBD}=\widehat{CED}\)

BD=ED

\(\widehat{BDF}=\widehat{EDC}\)

Do đó: ΔDBF=ΔDEC

a: Xét ΔABD và ΔAED có

AB=AE
góc BAD=góc EAD

AD chung

Do đo: ΔABD=ΔAED
Suy ra: DB=DE
b: Xét ΔDBH và ΔDEC có

góc DBH=góc DEC

DB=DE

góc BDH=góc EDC

Do đó: ΔDBH=ΔDEC

c: Ta có: ΔDBH=ΔDEC

nên góc DHB=góc DCE

d: Ta có: AH=AB+BH

AC=AE+EC

mà AB=AE; BH=EC

nên AH=AC

5 tháng 5 2023

a) - Xét tam giác ABD và tam giác AED, có:
    + Chung AD
    + góc BAD = góc EAD (AD là tia phân giác của góc BAC)
    + AB = AE (gt)
=> tam giác ABD = tam giác AED (cgc)

5 tháng 5 2023

câu b) hình như điều cần chứng minh nhầm rồi hay sao ý

a: Xét ΔABD và ΔAED có 

AB=AE
\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔABD=ΔAED

b: Xét ΔBDF và ΔEDC có 

\(\widehat{BDF}=\widehat{EDC}\)

DB=DE

\(\widehat{DBF}=\widehat{DEC}\)

Do đó: ΔBDF=ΔEDC

17 tháng 5 2022

giúp mk câu c vs d ấy ạ

 

a: Xét ΔADB và ΔADE có

AD chung

góc BAD=góc EAD

AB=AE

=>ΔADB=ΔADE

=>góc ABD=góc AED

b: Xét ΔAEF vuông tại A và ΔABC vuông tại A có

AE=AB

góc AEF=góc ABC

=>ΔAEF=ΔABC

=>AC=AF

25 tháng 7 2019

B C A F H E D K

+ Xét \(\Delta ABD;\Delta AED\)có :

AB = AE ( gt)

BAD = EAD      ( AD là p/g góc A)

AD là cạnh chung                                        

=> \(\Delta ABD=\Delta AED\left(c-g-c\right)\)

+ Vì \(\Delta ABD=\Delta AED\Rightarrow\widehat{ABD}=\widehat{AED}\)( hai góc tương ứng)

                                           => \(\widehat{ABC}=\widehat{AEK}\)

+ Xét\(\Delta AEK;\Delta ABC\)có :

góc AEK = góc ABC

AE = AB (gt)

góc A chung

=> \(\Delta AEK=\Delta ABC\)( c-g-c)

=> AK = AC ( hai cạnh tương ứng)

+ Vì \(\hept{\begin{cases}AF=AB\\AE=AB\end{cases}\left(gt\right)\Rightarrow AE=AF}\)

 + Cmtt câu a, có : \(\Delta EAH=\Delta FAH\)(c-g-c)

=> \(\widehat{AEH}=\widehat{AFH}\)( hai góc tương ứng)

Mà góc BAC = AEH + AFH ( BAC là góc ngoài từ đỉnh A của tg AEF)

+ Vì AD là p/g của góc A => \(\widehat{BAD}=\widehat{DAE}=\frac{1}{2}\widehat{BAC}\)

=> \(\widehat{BAC}=2\widehat{DAE}\)(2)

=> \(\widehat{AEH}=\widehat{DAE}\)=> FE // AD ( 2 góc so le trong =)

a: Xét ΔBAD và ΔBMD có

BA=BM

góc ABD=góc MBD

BD chung

=>ΔBAD=ΔBMD

b: DA=DM

=>góc DAM=góc DMA