Giả sử phương trình : \(ax^2+bx+c=0\left(a\ne0\right)\)
CMR : a, Nếu -b/a > 0 thì trong 2 nghiệm của pt có ít nhất 1 nghiệm > 0
b, Nếu ac < 0 thì pt có 2 nghiệm trái dấu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
phantuananh mk cũng bị cái câu hỏi làm cho @@ ùi
\(PT:ax^2+bx+c=0\) (1) có 2 nghiệm pb có dúng 1 nghiệm dương(x1) => ac<0 ; \(\sqrt{\Delta}=b^2-4ac>0\)
\(PT:ct^2+bt+a=0\) (2) có ac<0 => \(\sqrt{\Delta}=b^2-4ac>0\) (theo trên) => (2) cũng có 2 nghiệm pb ,trái dấu ( 1 dương = t1 )
ta có : x1>0 ; t1 >0 nên :
+ \(x_1.t_1=\frac{-b+\sqrt{\Delta}}{2a}.\frac{-b-\sqrt{\Delta}}{2c}=\frac{4ac}{4ac}=1\left(Neusa>0;c<0\right)\)
+ \(x_1.t_1=\frac{-b-\sqrt{\Delta}}{2a}.\frac{-b+\sqrt{\Delta}}{2c}=\frac{4ac}{4ac}=1\left(Neusa<0;c>0\right)\)
=> \(x_1+t_1\ge2\sqrt{x_1.t_1}=2\)
Giả sử 2 pt vô nghiệm. Khi đó \(p_1^2< 4q_1;p_2^2< 4q_2\Rightarrow p_1^2+p_2^2< 4\left(q_1+q_2\right)\le2p_1p_2\Leftrightarrow\left(p_1-p_2\right)^2< 0\). (vô lí)
Do đó tồn tại 1 pt có nghiệm
a) Thay x = 5 vào thì phương trình trở thành \(5^2-5.5+b=0\)
\(\Rightarrow25-25+b=0\Rightarrow b=0\)
Lúc đó phương trình trở thành \(x^2-5x=0\)
\(\Leftrightarrow x\left(x-5\right)=0\)
Dễ dàng suy ra nghiệm còn lại của phương trình là 0
b) Thay x = 3 vào thì phương trình trở thành \(3^2+3b-15=0\)
\(\Rightarrow3b-6=0\Leftrightarrow b=2\)
Lúc đó phương trình trở thành \(x^2+2x-15=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+5\right)=0\)
Dễ dàng suy ra nghiệm còn lại của phương trình là -5
a) Vì \(x=5\)là 1 nghiệm của phương trình
\(\Rightarrow\)Thay \(x=5\)vào phương trình ta được:
\(5^2-5.5+b=0\)\(\Leftrightarrow25-25+b=0\)\(\Leftrightarrow b=0\)
Thay \(b=0\)vào phương trình ta được:
\(x^2-5x=0\)\(\Leftrightarrow x\left(x-5\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)
Vậy \(b=0\)và nghiệm thứ 2 của phương trình là \(x=0\)
b) Vì \(x=3\)là 1 nghiệm của phương trình
\(\Rightarrow\)Thay \(x=3\)vào phương trình ta được:
\(3^2+3b-15=0\)\(\Leftrightarrow9+3b-15=0\)
\(\Leftrightarrow3x-6=0\)\(\Leftrightarrow3b=6\)\(\Leftrightarrow b=2\)
Thay \(b=2\)vào phương trình ta được:
\(x^2+2x-15=0\)\(\Leftrightarrow\left(x^2-3x\right)+\left(5x-15\right)=0\)
\(\Leftrightarrow x\left(x-3\right)+5\left(x-3\right)=0\)\(\Leftrightarrow\left(x-3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}\)
Vậy \(b=2\)và nghiệm thứ 2 của phương trình là \(x=-5\)
vì 1 là 1 nghiệm của f(x) nên a*12+b*1+c=0 hay a+b+c=0
ta có g(1)=c*12+b*1+a=a+b+c=0
vậy 1 là 1 nghiệm của g(x)
Vì x1 là nghiệm của pt => \(ax1^2+bx1+c=0\)
Do x1 > 0 . chia cả hai vế cho x1^2 ta đc pt:
\(a+b\cdot\left(\frac{1}{x1}\right)+c\left(\frac{1}{x1}\right)^2=0\) => \(\frac{1}{x1}\) là nghiệm của pt (2)
=> \(x3=\frac{1}{x1}\) (1)
CMTT x4 = 1/x2 (2)
Vì pt (1) có 2 n* nguyên dương x1 ; x2 => pt (2) cũng có hai nghiệm nguyên dương x3 ; x4
Xét \(x1+x2+x3+x4=x1+x2+\frac{1}{x1}+\frac{1}{x2}=\left(x1+\frac{1}{x1}\right)+\left(x2+\frac{1}{x2}\right)\ge4\) ( BĐT cô si )
(1) (2) có delta như nhau.
\(x_1.x_2.x_3.x_4=\frac{-b+\sqrt{\Delta}}{2a}.\frac{-b-\sqrt{\Delta}}{2a}.\frac{-b+\sqrt{\Delta}}{2c}.\frac{-b-\sqrt{\Delta}}{2c}=\frac{\left(4ac\right)^2}{16a^2c^2}=1\)
Cô si 4 số dương => KL...