A=(1 - 1/1+2) x (1-1/1+2+3) x (1-1/1+2+3) x (1-1/1+2+3)x1-1/1+2+3+4)x ... x (1-1/1+2+3+...+2018)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
a) 3 2/5 - 1/2
= 17/5 - 1/2
= 34/10 - 5/10
= 29/10
b) 4/5 + 1/5 × 3/4
= 4/5 + 3/20
= 16/20 + 3/20
= 19/20
c) 3 1/2 × 1 1/7
= 7/2 × 8/7
= 4
d) 4 1/6 : 2 1/3
= 25/6 : 7/3
= 25/14
Bài 2
a) 3 × 1/2 + 1/4 × 1/3
= 3/2 + 1/12
= 18/12 + 1/12
= 19/12
b) 1 4/5 - 2/3 : 2 1/3
= 9/5 - 2/3 : 7/3
= 9/5 - 2/7
= 63/35 - 10/35
= 53/35
1.\(\dfrac{-1}{4}\) \(-\) x \(=\dfrac{-3}{2}\)
\(\Leftrightarrow\) x \(\dfrac{-3}{2}-\dfrac{-1}{4}\)
\(\Leftrightarrow\) x \(=\dfrac{-5}{4}\)
1. -1/4 - x = -3/2
x = -1/4 - -3/2
x = -1/4 - -6/4
x = 5/4
2. 3/5 . (x - 1/2) : 3/5 - 1/3 = -1/2
3/5 . (x - 1/2) : 3/5 = -1/2 + 1/3
3/5 . (x - 1/2) : 3/5 = -3/6 + 2/6
3/5 . (x - 1/2) : 3/5 = -1/6
3/5 . (x - 1/2) = -1/6 . 3/5
3/5 . (x - 1/2) = -1/10
x - 1/2 = -1/10 : 3/5
x - 1/2 = -1/6
x = -1/6 + 1/2
x = -1/6 + 3/6
x = 2/6
x = 1/3
Mấy câu sau bn tự làm nha!
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2017}\right)\)
\(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2016}{2017}\)
\(A=\frac{1}{2017}\)
\(\frac{1-1}{2}.\frac{1-1}{3}.\frac{1-1}{4}......\frac{1-1}{2017}.\frac{1-1}{2018}\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}........\frac{2016}{2017}.\frac{2017}{2018}\)
\(=\frac{1}{2018}\)
\(x-5=\frac{1}{3\left(x+2\right)}\left(đkxđ:x\ne-2\right)\)
\(< =>3\left(x-5\right)\left(x+2\right)=1\)
\(< =>3\left(x^2-3x-10\right)=1\)
\(< =>x^2-3x-10=\frac{1}{3}\)
\(< =>x^2-3x-\frac{31}{3}=0\)
giải pt bậc 2 dễ r
\(\frac{x}{3}+\frac{x}{4}=\frac{x}{5}-\frac{x}{6}\)
\(< =>\frac{4x+3x}{12}=\frac{6x-5x}{30}\)
\(< =>\frac{7x}{12}=\frac{x}{30}< =>12x=210x\)
\(< =>x\left(210-12\right)=0< =>x=0\)
\(A=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)\left(1-\frac{1}{1+2+3+4}\right)...\left(1-\frac{1}{1+2+3+4+...+2018}\right)\)
\(A=\frac{2}{1+2}\cdot\frac{2+3}{1+2+3}\cdot\frac{2+3+4}{1+2+3+4}\cdot...\cdot\frac{2+3+4+5+...+2018}{1+2+3+4+5+...+2018}\)
Đến chỗ này đố ai tính được ?!!?!
gạch các số của tử số và các số của mẫu số giống nhau
ví dụ như bạn nói:
\(\dfrac{2+3+4+5+...+2018}{1+2+3+4+5+...+2018} =1\)