Tìm x,y,z
- x/2=y/3=z/4 và x+y+z=18
Giúp mình nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(x^2+y^2+z^2\ge xy+yz+zx\)
Đẳng thức xảy ra khi x = y = z
Bạn áp dụng vào nhé.
Ngọc cứ làm tắt thì vài người hiểu chứ vài bạn không biết đâu :)
Ta có :
\(x^2+y^2+z^2=xy+xz+yz\)
\(\Rightarrow x^2+y^2+z^2-xy-xz-yz=0\)
\(\Rightarrow2\left(x^2+y^2+z^2-xy-xz-yz\right)=0\)
\(\Rightarrow x^2+y^2-2xy+y^2+z^2-2yz+x^2+z^2-2xz=0\)
\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)
Mà \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(x-z\right)^2\ge0\\\left(y-z\right)^2\ge0\end{cases}}\)
\(\Rightarrow x-y=x-z=y-z=0\)
\(\Rightarrow x=y=z\)
\(\Rightarrow x^{2016}=y^{2016}=z^{2016}\)
Mà \(x^{2016}+y^{2016}+z^{2016}=3^{2016}\)
\(\Rightarrow x^{2016}=y^{2016}=z^{2016}=\frac{3^{2016}}{3}=3^{2015}\)
\(\Rightarrow x=y=z=\sqrt[2016]{3^{2015}}=\sqrt[2016]{\frac{3^{2016}}{3}}=\frac{3}{\sqrt[2016]{3}}\)
T ừ x2 + y2 + z2 = xy + yz + zx nhân 2 vế với 2 rồi chuyển vế ta có:
2x2 + 2y2 + 2z2 - 2xy -2 yz -2zx = 0
<=> (X^2 - 2xy + y^2 ) + ( x^ 2 -2zx + z^2) + (y^2 -2 yz+ z^2) =0
<=> ( x -y)^2 + (x - z)^2 + ( y-z)^2= 0
=> x-y=0; x-z=0; y-z= 0
=>. x=y=z thay vào x^2009+ y^2009 +z^2009= 3^2010
ta có 3x^2009 = 3^2010 = 3.3^ 2009 => x=3
Vậy x=y=z =3
\(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}=\dfrac{4a-3b+2c}{4-6+6}=\dfrac{36}{4}=9\\ \Rightarrow\left\{{}\begin{matrix}a=9\\b=18\\c=27\end{matrix}\right.\\ \dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{4}\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{16}=\dfrac{x-y+z}{10-15+16}=\dfrac{-49}{11}\\ \Rightarrow\left\{{}\begin{matrix}x=-\dfrac{490}{11}\\y=-\dfrac{735}{11}\\z=-\dfrac{784}{11}\end{matrix}\right.\)
Bn tham khảo nha :
https://olm.vn/hoi-dap/detail/55561591911.html
* Bn vô thống kê hỏi đáp của mik xem thì link mới hoạt động *
~ Hok tốt ~
#Gumball
Lời giải:
Tập xác định của phương trình
Sử dụng tính chất tỉ lệ thức, có thể biến đổi phương trình như sau
Chia cả hai vế cho cùng một số
Đơn giản biểu thức
Lời giải thu được
Ẩn lời giải
Kết quả: Giải phương trình với tập xác định
Áp dụng tính chất dãy tỉ số bằng nhau ta có \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{18}{9}=2\)
=> \(\hept{\begin{cases}x=2.2=4\\y=3.2=6\\z=4.2=8\end{cases}}\)
Vậy x = 4 ; y = 6; z = 8
áp dụng tính chất dãy tỉ số bằng nhau ta được
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{18}{9}=2\)
x=2.2=4
y=3.2=6
z=4.2=8
vậy x=4 y=6 z=8