tính giá trị biểu thức :A =(1 + 1/2) * (1+1/3)*(1+1/4)*…*(1+2021)
Ai giải được trước mình cho 1 like
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1-\dfrac{1}{2}\right)\times\left(1-\dfrac{1}{3}\right)\times\left(1-\dfrac{1}{4}\right)\times...\times\left(1-\dfrac{1}{2023}\right)\\ =\dfrac{1}{2}\times\dfrac{2}{3}\times\dfrac{3}{4}\times...\times\dfrac{2022}{2023}\\ =\dfrac{1}{2023}\)
Đặt biểu thức trên là A
TC
√1 + 1/1^2 + 1/2^2 = 1 + 1 - 1/2
Tương tự
√1 + 1/2^2 + 1/3^2 = 1 + 1/2 - 1/3
√1 + 1/2021^2 + 2022^2 = 1 + 1/2021 - 1/2022
=> A = (1 + 1 + 1/3 +...+ 1/2021) - (1/2 + 1/3 +....+ 1/2022)
=> A = 1 + 1 - 1/2022 = 4043/2022
đúng không bạn
Ta có :
\(B=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right).....\left(1-\frac{1}{2003}\right)\left(1-\frac{1}{2004}\right)\)
\(B=\frac{1}{2}.\frac{2}{3}.....\frac{2002}{2003}.\frac{2003}{2004}\)
\(B=\frac{1.2.....2002.2003}{2.3.....2003.2004}\)
\(B=\frac{1}{2004}\)
Vậy \(B=\frac{1}{2004}\)
Chúc bạn học tốt ~
\(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{2020}{2021}\cdot\dfrac{2021}{2022}=\dfrac{1}{2022}\)
\(B=\left(1-\dfrac{1}{2}\right)\cdot\left(1-\dfrac{1}{3}\right)\cdot\left(1-\dfrac{1}{4}\right)\cdot\cdot\cdot\left(1-\dfrac{1}{2021}\right)\cdot\left(1-\dfrac{1}{2022}\right)\)
\(B=\left(\dfrac{2}{2}-\dfrac{1}{2}\right)\cdot\left(\dfrac{3}{3}-\dfrac{1}{3}\right)\cdot\left(\dfrac{4}{4}-\dfrac{1}{4}\right)\cdot\cdot\cdot\left(\dfrac{2021}{2021}-\dfrac{1}{2021}\right)\cdot\left(\dfrac{2022}{2022}-\dfrac{1}{2022}\right)\)
\(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot\cdot\cdot\dfrac{2020}{2021}\cdot\dfrac{2021}{2022}\)
\(B=\dfrac{1\cdot2\cdot3\cdot\cdot\cdot2020\cdot2021}{2\cdot3\cdot4\cdot\cdot\cdot2021\cdot2022}\)
\(B=\dfrac{1}{2022}\)
B = (1 + 1/2)(1 + 1/3)(1 + 1/4) ...(1 + 1/100)
= \(\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{101}{100}\)
= \(\frac{3.4.5....101}{2.3.4...100}=\frac{101}{2}\)
C = \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{1000}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{999}{1000}\)
\(=\frac{1.2.3...999}{2.3.4....1000}=\frac{1}{1000}\)
\(A=\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{2021}\right)\)
\(=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot...\cdot\frac{2022}{2021}\)
\(=\frac{2022}{2}\)
\(=1011\)
A= 1* (1/2+1/3+1/4+...+2021)
A= 1/2+1/3+1/4+...+2021
Mik sẽ ko tính giúp bạn hết toàn bộ để bạn có thể tự làm được!