K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(9a^2b+6ab^2+b^3-6ab-2b^2\)

\(=b\left(9a^2+6ab+b^2-6a-2b\right)\)

\(=b\left[\left(3a+b\right)^2-2\left(3a+b\right)\right]\)

\(=b\left(3a+b\right)\left(3a+b-2\right)\)

NV
1 tháng 8 2021

\(=b\left(9a^2+6ab+b^2\right)-2b\left(3a+b\right)\)

\(=b\left(3a+b\right)^2-2b\left(3a+b\right)\)

\(=b\left(3a+b\right)\left(3a+b-2\right)\)

 

\(9a^2b+6ab^2+b^3-6ab-2b^2\)

\(=b\left(9a^2+6ab+b^2-6a-2b\right)\)

\(=b\left[\left(3a+b\right)^2-2\left(3a+b\right)\right]\)

\(=b\left(3a+b\right)\left(3a+b-2\right)\)

30 tháng 5 2018

b) 8a3 + 4a2b - 2ab2 – b3 = (8a3 – b3 ) + (4a2b - 2ab2 )

= (2a – b)(4a2 + 2ab + b2) + 2ab(2a – b)

= (2a – b)( 4a2 + 2ab + b2 + 2ab) = (2a – b)(2a + b)2

7 tháng 11 2021

C

7 tháng 11 2021

c

5 tháng 9 2019

Biến đổi vế trái:

a + b + c 3 = a + + c 3  = a + b 3 +3 a + b 2  c+3(a+b) c 2 + c 3

      =  a 3  + 3 a 2 b + 3a b 2  +  b 3  + 3( a 2 + 2ab +  b 2 )c + 3a c 2  + 3b c 2  +  c 3

      =  a 3  + 3 a 2 b + 3a b 2  +  b 3  + 3 a 2 c + 6abc + 3 b 2 c + 3a c 2  + 3b c 2 + c3

      =  a 3 +  b 3  +  c 3  + 3 a 2 b + 3a b 2 + 3 a 2 c + 6abc + 3 b 2 c + 3a c 2  + 3b c 2

      =  a 3  +  b 3  +  c 3  + (3 a 2 b + 3a b 2 ) +( 3 a 2 c + 3abc)+ (3abc + 3 b 2 c)+(3a c 2  + 3b c 2 )

      =  a 3  +  b 3  +  c 3  + 3ab(a + b) + 3ac(a + b) + 3bc(a + b) + 3 c 2 (a + b)

      =  a 3  +  b 3  +  c 3 + 3(a + b)(ab + ac + bc +  c 2 )

      =  a 3  +  b 3  +  c 3  + 3(a + b)[a(b + c) + c(b + c)]

      =  a 3  +  b 3  +  c 3  + 3(a + b)(b + c)(a + c) (đpcm)

a(b3 - c3) + b(c- a3) + c(a- b3)

= a(b3 - c) + b( c3 - b3 + b3 - a3) + c(a3 - b3)

= a(b3 - c3) + b(c3 - b3) + b(b3 - a3) + c(a3 - b3)

= a(b3 - c3) - b(b3 - c3) - [b(a3 - b3) - c(a3- b3)]

= (b3 - c3)(a - b) - (a3- b3)(b - c)

= (b - c)(b2 + bc + c2)(a - b) - (a - b)(a2 + ab + b2)(b - c)

= (b - c)(a - b)(b2 + bc + c2 - a2 + ab - b2)

= (b - c)(a - b) [ (c2  - a2) + (bc - ab) ]

= (b - c)(a - b) [ (c - a)(c + a) + b(c - a) ]

= (b - c)(a -b) [ (c - a)(c + a + b) ]

= (a- b)(b - c)(c - a)(a + b + c)

29 tháng 8 2017

21 tháng 1 2022

\(a,VT=\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+b^2c^2+a^2d^2+b^2d^2\)

\(VP=\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2=a^2c^2+b^2c^2+a^2d^2+b^2d^2\)

\(\Rightarrow VT=a^2c^2+b^2c^2+a^2d^2+b^2d^2=VP\left(đpcm\right)\)

b, Tham khảo:Chứng minh hằng đẳng thức:(a+b+c)3= a3 + b3 + c3 + 3(a+b)(b+c)(c+a) - Hoc24

29 tháng 6 2019

#)Giải :

Ta có : \(\left(a+b+c\right)^3\)

\(=\left(\left(a+b\right)+c\right)^3\)

\(=\left(a+b\right)^3+c^3+3\left(a+b\right)c\left(a+b+c\right)\)

\(=a^3+b^3+3\left(a+b\right)\left(ab+c\left(a+b+c\right)\right)\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)\)

Hay chính là \(a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(\Rightarrowđpcm\)

29 tháng 6 2019

ta có:

VT=(a+b+c)^3=[(a+b)+c]^3

                  =(a+b)^3+c^3+3(a+b)c(a+b+c)

                 =a^3+b^3+c^3+3ab(a+b)+3c(a+b+c)(a+b)

                 =a^3+b^3+c^3+3(a+b)(ab+ac+cb+c^2)

                 =a^3+b^3+c^3+3(a+b)(b+c)(c+a)

=>VT=VP( đpcm)