K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2016

giúp mk vs

4 tháng 4 2016

a) để pt có nghiệm <=> đen ta phẩy >= 0

                            <=> (-(m-1)) - 1(-3m+m2) >= 0

                            <=> (m-1)2 +3m-m2  >= 0

                            <=> m2-2m+1+3m-m2  >= 0

                            <=> m+1 >= 0

                            <=> m >= -1

vậy khi m >= -1 thì pt có nghiệm

b)   khi m >= -1 thì pt có nghiệm ( theo a)

 theo vi-ét ta có: x1+x2 = 2(m-1)       (1)

                         x1.x= -3m + m2   (2)

theo đầu bài ta có: x12 + x22=16

                    <=> x12+ 2x1x2+ x22 -2x1x2= 16

                    <=> (x1+x2)-2x1x2 = 16    (3)

thay (1) và (2) và (3) rồi tính m.

kết quả: khi m=3 thì pt có nghiệm thỏa mãn đk đó.

                    

   

22 tháng 12 2016

Giao luu

29 tháng 1 2019

giúp vs ạ

29 tháng 1 2019

a, Vì pt trên nhận \(4+\sqrt{2019}\) là nghiệm nên

\(\left(4+\sqrt{2019}\right)^2-\left(2m+2\right)\left(4+\sqrt{2019}\right)+m^2+2m=0\)

\(\Leftrightarrow2035+8\sqrt{2019}-2m\left(4+\sqrt{2019}\right)-8-2\sqrt{2019}+m^2+2m=0\)

\(\Leftrightarrow m^2-2m\left(3+\sqrt{2019}\right)+6\sqrt{2019}+2027=0\)

Có \(\Delta'=\left(3+\sqrt{2019}\right)^2-6\sqrt{2019}-2027=1>0\)

Nên pt có 2 nghiệm \(m=\frac{3+\sqrt{2019}-1}{1}=2+\sqrt{2019}\)

                   hoặc \(m=\frac{3+\sqrt{2019}+1}{1}=4+\sqrt{2019}\)

b, Theo Vi-ét \(\hept{\begin{cases}x_1+x_2=2m+2\left(1\right)\\x_1x_2=m^2+2m\left(2\right)\end{cases}}\)

Theo đề \(x_1-x_2=m^2+2\left(3\right)\)

Lấy (1) + (3) theo từng vế được 

\(2x_1=m^2+2m+5\)

\(\Rightarrow x_1=\frac{m^2+2m+5}{2}\)

\(\Rightarrow x_2=2m+2-x_1=...=-\frac{\left(m-1\right)^2}{2}\)

Thay vào (2) được \(\frac{m^2+2m+5}{2}.\frac{-\left(m-1\right)^2}{2}=m^2+2m\)

                \(\Leftrightarrow-\left(m^2+2m+5\right)\left(m-1\right)^2=4m^2+8m\)

hmmm