Tìm x và y
2x = 4y-1 và 27y = 3x+8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ( 3x + 5 )2 = 9x2+30x+25
b) ( x2- 4y )2 = x4 - 8x2y + 16y2
c) ( 8y+1 )( 8y-1 ) = 64y2 - 1
d) ( 2x3+1 ) = 8x9+6x6+6x3+1
e) 27y3 - 8 = ( 3y )3 - 23 = ( 3y -2 )( 9y2+6y+4 )
f)125 + 27y3 = 53 + ( 3y )3 = ( 5+3y )( 25+30y+9y2 )
Hk tốt
Ta có: \(\dfrac{-2}{x}=\dfrac{-8}{y}\)
\(\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{8}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{8}=\dfrac{-3x+4y}{-3\cdot2+4\cdot8}=\dfrac{-182}{26}=-7\)
Do đó: x=-14; y=-56
Bài 1:
Ta có:
\(y-x=25\Rightarrow y=25+x\)
Mà \(7x=4y\Rightarrow7x=4\cdot\left(25+x\right)\)
\(7x=100+4x\)
\(\Rightarrow7x-4x=100\)
\(3x=100\)
\(x=\frac{100}{3}\)
bài 1 :
Ta có: 7x=4y ⇔ x/4=y/7
áp dụng tính chất dãy tỉ số bằng nhau ta có
x/4=y/7=(y-x)/(7-4)=100/3
⇒x= 4 x 100/3=400/3 ; y = 7 x 100/3=700/3
bài 2
ta có x/5 = y/6 ⇔ x/20=y/24
y/8 = z/7 ⇔ y/24=z/21
⇒x/20=y/24=z/21
ADTCDTSBN(bài 1 có)
x/20=y/24=z/21=(x+y)/(20+24)=69/48=23/16
⇒x= 20 x 23/16 = 115/4
y= 24x 23/16=138/2
z=21x23/16=483/16
\(\frac{x}{-8}=\frac{y}{7}=\frac{-3x}{24}=\frac{4y}{28}=\frac{-3x-4y}{24-28}=\frac{16}{-4}=-4\)
=> x = -4.(-8) = 32
y = -4.7 = -28
Trời như quanh năm suốt tháng mới thấy Huân già trả lời câu hỏi,tui ủng hộ 1 tick nha!
Ta có: \(\hept{\begin{cases}3x=4y;2y=5z\\2x-3y+z=8\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{4}=\frac{y}{3};\frac{y}{5}=\frac{z}{2}\\2x-3y+z=8\end{cases}}}\) \(\Rightarrow\frac{x}{20}=\frac{y}{15}=\frac{z}{6}\Rightarrow\frac{2x-3y+z}{40-45+6}=\frac{8}{1}=8\)
Vậy : \(x=8.20=160;y=8.15=120;z=8.6=48\)
Ta có :
\(\frac{x}{y}=\frac{3}{8}\Leftrightarrow\frac{x}{3}=\frac{y}{8}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{8}=\frac{-3x-4y}{-3.3-4.8}=\frac{41}{-41}=\left(-1\right)\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{3}=\left(-1\right)\Rightarrow x=\left(-3\right)\\\frac{y}{7}=\left(-1\right)\Rightarrow y=\left(-7\right)\end{cases}}\)
Vậy ...
\(A=x-2y+3z\left(x,y,z>0\right)\)
\(\left\{{}\begin{matrix}2x+4x+3z=8\left(1\right)\\3x+y-3z=2\left(2\right)\end{matrix}\right.\)
(1) <=> \(5x+5y=10\) <=> x+ y = 2
=> y = 2-x
Từ (1) => \(2x+4\left(2-x\right)+3z=8\)
=> -2x +3z =0
=> \(x=\dfrac{3}{2}z\) => \(z=\dfrac{2}{3}x\) thay vào A
=> \(A=x-2\left(2-x\right)+3.\dfrac{2}{3}x=5x-4\ge-4\)
Vậy Amin = -4.
Ta có : 2x = 4y - 1
=> 2x = 22y - 2
=> x = 2y - 2
=> 2y = x + 2 (1)
Lại có 27y = 3x + 8
=> 33y = 3x + 8
=> 3y = x + 8 (2)
Từ (1)(2) => 3y - 2y = x + 8 - x - 2
=> y = 6
=> x = 3.6 - 8 = 10
Vậy x = 6 ; y = 10