Cho b>0. Nếu a<b thì a/b < a+1/b+1
Đề bài là chứng minh tính chất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Mệnh đề có dạng \(P \Rightarrow Q\) với P: “\(2a - 1 > 0\)” và Q: “\(a > 0\)”
Ta thấy khi P đúng (tức là \(a > \frac{1}{2}\)) thì Q cũng đúng. Do đó, \(P \Rightarrow Q\) đúng.
b) Mệnh đề có dạng \(P \Leftrightarrow Q\) với P: “\(a - 2 > b\)” và Q: “\(a > b + 2\)”
Khi P đúng thì Q cũng đúng, do đó, \(P \Rightarrow Q\) đúng.
Khi Q đúng thì P cũng đúng, do đó, \(Q \Rightarrow P\) đúng.
Vậy mệnh đề \(P \Leftrightarrow Q\) đúng.
ta có b > 0
=> a + b > a ( mỗi vế cộng thêm cho a )
vậy b> 0 thì a + b > a
vậy th hết rồi
a) thì b>0
b) thì b < 0
c)a>0,b<0, b<0,a>0 hoặc a,b=0
d) thì a>b hoặc a,b=0
e) thì a>b>=0
g)thì a=0 hoặc b =0
h)b<0
i)b>0
a) Nếu \(a+b>0\) và \(a< 0\) thì \(b>\left|a\right|\)
b) Nếu \(a+b< 0\) và \(a>0\) thì \(\left|b\right|>a\)
c) Nếu \(a+b=0\) thì a và b là 2 số đối nhau
d) Nếu \(a-b=0\) thì \(a=b\)
e) Nếu \(a-b>0\) thì \(a>b\)
g) Nếu \(ab=0\) thì \(a=0\) hoặc \(b=0\)
h) Nếu \(ab>0\) và \(a< 0\) thì \(b< 0\)
i) Nếu \(ab< 0\) và \(a< 0\) thì \(b>0\)
a) Nếu a <0 thì -a>0
b) Nếu a<0 thì /a/= -a
c) Nếu a<0 thì a+/-a/=0
P/s: bn ghi dấu gía trị tuyệt đối kiểu j vậy?
VD: a) Giả sử a= -2 thì -a= -(-2)=2>0 (thỏa mãn)
b) Giả sử a= -5 thì /a/=/-5/=5= -(-5)= -a (thỏa mãn)
c) Giả sử a= -10 thì a+/-a/= -10+/-(-10)/= -10+/10/= -10+10=0 (thỏa mãn)
Đáp án D
Định lí: “Nếu hàm số y = f x liên tục trên a ; b và f a . f b < 0 thì tồn tại ít nhất một điểm c ∈ a ; b sao cho f c = 0 ”.
Mệnh đề 1: SAI ở giả thiết (a;b).
Mệnh đề 2: Nếu hàm số y=f(x) liên tục trên a ; b
và f a . f b < 0 thì tồn tại ít nhất một điểm c ∈ a ; b sao cho c hay f x = 0 là nghiệm của phương trình f(x)=0 nên mệnh đề 2 ĐÚNG.
Mệnh đề 3: Nếu hàm số y=f(x) liên tục, đơn điệu trên a ; b và f a . f b < 0 thì đồ thị hàm số y=f(x) cắt trục Ox tại duy nhất một điểm thuộc khoảng (a;b) nên f(x)=0 có nghiệm duy nhất trên (a;b). Do đó mệnh đề 3 ĐÚNG
a) thì b> /a/
b) thì b<-a
c) thì a=0;b=0 hoặc a và b đối nhau
d) thì a=b
tích .........
b>0 thì liên quan j đến a
Nếu a<b thì a/b < a+1/b+1