Tìm x thỏa:
3x^2-18x+32=4.√x+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(2x^3-18x=0\)
\(\Leftrightarrow2x\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
b: Ta có: \(\left(3x-2\right)\left(2x+1\right)-6x\left(x+2\right)=11\)
\(\Leftrightarrow6x^2+3x-4x-2-6x^2-12x=11\)
\(\Leftrightarrow-13x=13\)
hay x=-1
c: Ta có: \(\left(x-1\right)^3-\left(x+2\right)\left(x^2-2x+4\right)=3\left(1-x^2\right)\)
\(\Leftrightarrow x^3-3x^2+3x-1-x^3-8=3-3x^2\)
\(\Leftrightarrow3x=12\)
hay x=4
a) 2x3-18x=0
⇔ 2x(x2-9)=0
⇔ 2x(x-3)(x+3)=0
⇔ \(\left\{{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
b)(3x-1)(2x+1)-6x(x+2)=11
⇔ 6x2+x-1-6x2-12x=11
⇔ -11x=12
\(\Leftrightarrow x=-\dfrac{12}{11}\)
c) (x-1)3-(x+2).(x2-2x+4)=3.(1-x2)
⇔ x3-3x2+3x-1-x3-8-3+3x2=0
⇔ 3x=12
⇔ x=4
\(d,\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6x^2+12x+6=15\\ \Leftrightarrow24x=-10\Leftrightarrow x=-\dfrac{5}{12}\\ e,\Leftrightarrow x^3-3x^2+3x-1+8-x^3+3x^2+6x=17\\ \Leftrightarrow9x=10\Leftrightarrow x=\dfrac{10}{9}\\ f,\Leftrightarrow9x^2+18x+9-18x=36+x^3-27\\ \Leftrightarrow x^3-9x^2=0\Leftrightarrow x^2\left(x-9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\)
\(\frac{x}{x^2-x+1}=\frac{1}{2}\Leftrightarrow x^2-3x+1=0\)
\(P=\frac{x^2\left(x^2-3x+1\right)-\left(x^2-3x+1\right)+15x}{x\left(x^2-3x+1\right)+\left(x^2-3x+1\right)+9x}\)
\(=\frac{0-0+15x}{0+0+9x}=\frac{5}{5}\)
\(a,\left(3x+1\right)\left(3x-1\right)-\left(18x^3+5x^2-2x\right):2x\\ =\left(9x^2-1\right)-\left(9x^2+\dfrac{5}{2}x-1\right)\\ =9x^2-1-9x^2-\dfrac{5}{2}x+1=\dfrac{5}{2}x\)
\(b,3x\left(x-2021\right)-x+2021=0\\ \Rightarrow b,3x\left(x-2021\right)-\left(x-2021\right)=0\\ \Rightarrow\left(x-2021\right)\left(3x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=2021\\x=\dfrac{1}{3}\end{matrix}\right.\)
\(3x^2+6y^2+2z^2+3y^2z^2-18x=6\)
\(\Leftrightarrow3\left(x-3\right)^2+6y^2+2z^2+3y^2z^2=33\)
\(\Rightarrow3\left(x-3\right)^2\le33\)
\(\Leftrightarrow\left(x-3\right)^2\le11\)
\(\Leftrightarrow\left(x-3\right)^2=\left\{0;1;4;9\right\}\)
Thế lần lược vô giải tiếp sẽ ra
đk: \(x\ge0\)
Ta có: \(3x^2-18x+32=4\sqrt{x}+1\)
\(\Leftrightarrow3x^2-18x+31=4\sqrt{x}\)
\(\Leftrightarrow\left(3x^2-18x+31\right)^2=\left(4\sqrt{x}\right)^2\)
\(\Leftrightarrow9x^4+324x^2+961-108x^3-1116x+186x^2=16x\)
\(\Leftrightarrow9x^4-108x^3+510x^2-1132x+961=0\)
Bấm nghiệm ta được: \(x\approx2.1978946\) ; \(x\approx4.18013426\)