K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2020

1.

Áp dụng BĐT Cauchy - Schwars ta có:

\(\sqrt{a+bc}=\sqrt{a\left(a+b+c\right)+bc}=\sqrt{\left(a+b\right)\left(a+c\right)}=\sqrt{\left(\sqrt{a}^2+\sqrt{b}^2\right)\left(\sqrt{a}^2+\sqrt{c}^2\right)}\ge a+\sqrt{bc}\).

Tương tự rồi cộng vế với vế ta có đpcm.

6 tháng 9 2020

Dạ em cảm ơn Anh ạ

NV
6 tháng 3 2022

\(\dfrac{a}{a+2\sqrt{\left(a+bc\right)}}=\dfrac{a}{a+2\sqrt{a\left(a+b+c\right)+bc}}=\dfrac{a}{a+2\sqrt{\left(a+b\right)\left(a+c\right)}}\)

\(=\dfrac{a}{a+\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}+\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}+\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}+\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}}\)

\(\le\dfrac{a}{5^2}\left(\dfrac{1}{a}+\dfrac{1}{\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}}+\dfrac{1}{\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}}+\dfrac{1}{\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}}+\dfrac{1}{\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}}\right)\)

\(=\dfrac{a}{25}\left(\dfrac{1}{a}+\dfrac{8}{\sqrt{\left(a+b\right)\left(a+c\right)}}\right)=\dfrac{1}{25}+\dfrac{8}{25}.\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)

\(\le\dfrac{1}{25}+\dfrac{4}{25}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\)

Tương tự:

\(\dfrac{b}{b+2\sqrt{b+ac}}\le\dfrac{1}{25}+\dfrac{4}{25}\left(\dfrac{b}{a+b}+\dfrac{b}{b+c}\right)\)

\(\dfrac{c}{c+2\sqrt{c+ab}}\le\dfrac{1}{25}+\dfrac{4}{25}\left(\dfrac{c}{a+c}+\dfrac{c}{b+c}\right)\)

Cộng vế:

\(P\le\dfrac{3}{25}+\dfrac{4}{25}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{15}{25}=\dfrac{3}{5}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)

4 tháng 9 2021

Ủa bị lỗi hả:v? undefined

24 tháng 2 2023

Đề bài mình sửa lại : A = a2021 - b2021 + c2021 - (a - b + c)2021 

Ta có \(\sqrt{a}-\sqrt{b}+\sqrt{c}=\sqrt{a-b+c}\)

\(\Leftrightarrow a+b+c-2\sqrt{ab}-2\sqrt{bc}+2\sqrt{ca}=a-b+c\)

\(\Leftrightarrow b-\sqrt{ab}-\sqrt{bc}+\sqrt{ca}=0\)

\(\Leftrightarrow\sqrt{b}\left(\sqrt{b}-\sqrt{a}\right)-\sqrt{c}\left(\sqrt{b}-\sqrt{a}\right)=0\)

\(\Leftrightarrow\left(\sqrt{b}-\sqrt{c}\right).\left(\sqrt{b}-\sqrt{a}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}b=c\\b=a\end{matrix}\right.\)

Với b = c 

A = a2021 - b2021 + c2021 - (a - b + c)2021 

= a2021 - a2021

= 0 

Tương tự với b = a ta được A = 0

Vậy A = 0 

24 tháng 2 2023

Nếu không sửa thì 

P = a2021 - (a + 2b)2021 khi b = c

hoặc P = c2021 - (2b + c)2021  khi b = a

và giá trị của P còn phụ thuộc vào a,b,c  , không phải là hằng số . 

 

12 tháng 9 2016

Ta có : \(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}=1\Leftrightarrow\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=\sqrt{abc}\)

Do đó : \(ab+bc+ac\ge\frac{abc}{3}\)

\(\Leftrightarrow3\left(ab+bc+ac\right)\ge\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)^2\)

\(\Leftrightarrow2\left(ab+bc+ca\right)\ge2\left(\sqrt{a^2bc}+\sqrt{b^2ac}+\sqrt{c^2ab}\right)\)

\(\Leftrightarrow a\left(\sqrt{b}-\sqrt{c}\right)^2+b\left(\sqrt{c}-\sqrt{a}\right)^2+c\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) (luôn đúng)

Vậy bđt ban đầu được chứng minh