Tìm x biết
a,x^2<5.x
b,\(\frac{x+3}{2-x}\)\(\le\)0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) tổng=1+2+3+4=10
b)tổng = 0+1+2+3=6
c)tổng = 0+1+2+3+4=10
d)tổng=-1+0+1+2+3+4=9
e) x-1 = 1;2 ⇒x = 2;3 ⇒tổng = 2+3=5
f) x-2 = 3;4 ⇒ x = 5;6 ⇒ Tổng = 5+6=11
a) vì 0<x<5 => x thuộc {1;2;3;4}
tổng các số nguyên x là:1+2+3+4=10
b tương tự với tổng bằng 0+1+2+3=6
c)0+1+2+3+4=0+1+2+3+4=10
d)-1+0+1+2+3+4=[(-1)+1]+0+2+3+4=9
e)vì 0<x-1 ≤2 =>x-1 thuộc {1;2}
TH1:x-1=1 =>x=2
TH2:x-1=2 =>x=3
Vậy x thuộc {2;3}
tổng các số nguyên x là: 2+3=5
g)tương tự với x-2 thuộc {3;4} =>x thuộc {5;6}
tổng:5+6=11
vài chỗ mik ghi tương tự... thì bạn cứ giải như bài trên chứ đừng có ghi 2 chữ tương tự vô bài làm nha
Bài 3: \(A=\frac{\left(2a+b+c\right)\left(a+2b+c\right)\left(a+b+2c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Đặt a+b=x;b+c=y;c+a=z
\(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)
Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)
Bài 4: \(A=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x-18}{2-x}+\frac{18}{2-x}+\frac{2}{x}\ge-9+\frac{\left(\sqrt{18}+\sqrt{2}\right)^2}{2-x+x}=-9+\frac{32}{2}=7\)
Dấu = xảy ra khi\(\frac{\sqrt{18}}{2-x}=\frac{\sqrt{2}}{x}\Rightarrow x=\frac{1}{2}\)
a) \(\left(x-\frac{2}{5}\right).\left(x+\frac{3}{7}\right)<0\)
\(\Rightarrow x-\frac{2}{5}<0\) hoặc \(x-\frac{2}{5}>0\)
\(x+\frac{3}{7}>0\) \(x+\frac{3}{7}<0\)
\(\Rightarrow x<\frac{2}{5}\) hoặc \(x>\frac{2}{5}\)
\(x>-\frac{3}{7}\) \(x<-\frac{3}{7}\)
\(\Rightarrow-\frac{3}{7} hoặc \(x\in rỗng\)
vậy \(-\frac{3}{7}
b) \(\frac{1}{2}-\left(\frac{1}{3}+\frac{1}{4}\right)\le x\le\frac{1}{24}-\left(\frac{1}{8}-\frac{1}{3}\right)\)
\(\frac{-1}{12}\le x\le\frac{1}{4}\)
\(\frac{-1}{12}\le x\le\frac{3}{12}\)
\(\Rightarrow x=\frac{-1}{12};0;\frac{1}{12};\frac{2}{12};\frac{3}{12}\)
1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)
\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu
\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)
\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)
Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)
Ta có :
\(\frac{1}{2}+-\frac{3}{4}< x\le\frac{1}{5}+1\frac{4}{5}\)
\(\Rightarrow\frac{2}{4}+-\frac{3}{4}< x\le\frac{1}{5}+\frac{9}{5}\)
\(\Rightarrow\frac{-1}{4}< x\le\frac{10}{5}\)
\(\Rightarrow\frac{-1}{4}< x\le2\)
Mà \(x\in Z\)
\(\Rightarrow x\in\left\{0;1;2\right\}\)
Ta có: \(-\frac{2}{5}\le x\frac{-7}{5}< \frac{3}{5}\)
\(\Leftrightarrow\frac{-2}{5}\le\frac{x.\left(-7\right)}{5}< \frac{3}{5}\)
\(\Rightarrow-2\le x\left(-7\right)< 3\)
\(\Rightarrow x=\left(0\right)\)
a) Ta có: \(x^2< 5x\)
\(\Leftrightarrow x^2-5x< 0\)
\(\Leftrightarrow x.\left(x-5\right)< 0\)
Ta có bảng xét dấu:
x x x-5 h 0 5 - - - - + + + + +
\(\Rightarrow\)\(x< 0\)hoac \(x>5\)
b) Để \(\frac{x+3}{2-x}\le0\)
Ta có bảng xét dấu:
x x-3 2-x Thương 2 3 + + - - - - + - -
\(\Rightarrow\)\(\orbr{\begin{cases}x\le2\\x\ge3\end{cases}}\)