Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)
\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu
\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)
\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)
Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)
ta có x(x + 2) = 0
=> x = 0
x + 2 = 0
=> x = 0
x = -2
Vậy x = 0 hoặc x = -2
Ta có : (x + 1)(x - 2) = 0
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
a) Ta có: \(\hept{\begin{cases}\left|y-1\right|\ge0\forall y\\\left|5-x\right|\ge0\forall x\end{cases}\Rightarrow\left|y-1\right|+\left|5-x\right|\ge0\forall}x;y\)
Mà \(\left|y-1\right|+\left|5-x\right|=0\)
\(\Rightarrow\hept{\begin{cases}\left|y-1\right|=0\\\left|5-x\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}y-1=0\\5-x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=5\end{cases}}}\)
Vậy \(\hept{\begin{cases}y=1\\x=5\end{cases}}\)
b) Ta có: \(\left|y-6\right|\ge0\forall y\)
\(\Rightarrow\left|y-6\right|>0\Leftrightarrow y\ne6\)
\(\Rightarrow\)Để \(\frac{\left|y-6\right|}{x+2}>0\)thì \(\hept{\begin{cases}y\ne6\\x+2>0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}y\ne6\\x>-2\end{cases}}\)
Vậy \(\hept{\begin{cases}y\ne6\\x>-2\end{cases}}\)
c) Ta có: \(x^2\ge0\forall x\)
\(\Rightarrow x^2>0\Leftrightarrow x\ne0\)
Để \(\frac{x^2-1}{x^2}>0\Leftrightarrow\hept{\begin{cases}x^2-1>0\\x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x>1\\x\ne0\end{cases}\Leftrightarrow}x>1}\)
Vậy \(x>1\)
Tham khảo nhé~
Ta có: \(-\frac{2}{5}\le x\frac{-7}{5}< \frac{3}{5}\)
\(\Leftrightarrow\frac{-2}{5}\le\frac{x.\left(-7\right)}{5}< \frac{3}{5}\)
\(\Rightarrow-2\le x\left(-7\right)< 3\)
\(\Rightarrow x=\left(0\right)\)
a) \(3^{-8}\le3^x\le\frac{1}{243}.\)
\(\Rightarrow3^{-8}\le3^x\le3^{-5}\)
\(\Rightarrow-8\le x\le-5\)
\(\Rightarrow\left[{}\begin{matrix}x=-8\\x=-7\\x=-6\\x=-5\end{matrix}\right.\)
Vậy \(x\in\left\{-8;-7;-6;-5\right\}.\)
b) \(2^{-x}< \frac{1}{64}\)
\(\Rightarrow2^{-x}< 2^{-6}\)
\(\Rightarrow-x< -6\)
\(\Rightarrow x< 6.\)
Vậy \(x< 6.\)
Chúc bạn học tốt!
a) Ta có: \(x^2< 5x\)
\(\Leftrightarrow x^2-5x< 0\)
\(\Leftrightarrow x.\left(x-5\right)< 0\)
Ta có bảng xét dấu:
x x x-5 h 0 5 - - - - + + + + +
\(\Rightarrow\)\(x< 0\)hoac \(x>5\)
b) Để \(\frac{x+3}{2-x}\le0\)
Ta có bảng xét dấu:
x x-3 2-x Thương 2 3 + + - - - - + - -
\(\Rightarrow\)\(\orbr{\begin{cases}x\le2\\x\ge3\end{cases}}\)