K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 13. Cho tam giác ABC cân tại A (góc A nhọn) . Các đường cao AQ , BN , CM cắt nhau tại H. K là đểm đối xứng với H qua Q. Chứng minh: a.                  Tứ giác BHCK là hình bình hànhb.                 Đường thẳng qua K song với BC cắt đường thẳng qua C song song với AK tại E. CM: CQKE là hình chữ nhật và KC = QEc.                  Tứ giác HCEQ là hình bình hànhd.                 QE cắt BN tại I. Tìm điều kiện...
Đọc tiếp

Bài 13. Cho tam giác ABC cân tại A (góc A nhọn) . Các đường cao AQ , BN , CM cắt nhau tại H. K là đểm đối xứng với H qua Q. Chứng minh: 

a.                  Tứ giác BHCK là hình bình hành

b.                 Đường thẳng qua K song với BC cắt đường thẳng qua C song song với AK tại E. CM: CQKE là hình chữ nhật và KC = QE

c.                  Tứ giác HCEQ là hình bình hành

d.                 QE cắt BN tại I. Tìm điều kiện của tam giác ABC để tứ giác MCEI là hình bình hành.

e.                  Tìm điều kiện của tam giác ABC để tứ giác HIEC là hình thang cân.

Bài 14. Cho tam giác ABC vuông tại A (AB<AC) có trung tuyến AM, đường cao AH. Lấy D đối xứng với A qua M.

a.                  Tứ giác ABDC là hình gì? Vì sao?

b.                 Qua D kẻ đường thẳng song song với BC cắt AH tại I. Chứng minh I đối xứng với A qua BC

c.                  Chứng minh BCDI là hình thang cân

d.                 Tìm điều kiện của tam giác ABC để BMDI là hình bình hành

e.                  Vẽ HE AB tại E, HF  AC tại F. Chứng minh EF  AM.

4
28 tháng 10 2021

Chú ý đến hai tam giac vuông chung cạnh huyền là AEM, AFM, ta gọi I là trung điểm của AM, ta có IA = IE = IM = IF.

Như vậy EF là cạnh đáy tam giác cân IEF. Dễ thấy EIF^=2EAF^ mà EAF^ không đổi nên EIF^ không đổi.

Tam giác cân EIF có số đo góc ở đỉnh không đổi nên cạnh đáy nhỏ nhất khi và chỉ khi cạnh bên nhỏ nhất.

Do đó EF nhỏ nhất <=> IE nhỏ nhất <=> AM nhỏ nhất. Khi đó M là chân đường vuông góc kẻ từ A đến BC.

28 tháng 10 2021

"ơ"

thế này khác j làm bài hộ?

29 tháng 10 2021

a: Ta có: ΔABC cân tại A

mà AQ là đường cao ứng với cạnh đáy BC

nên Q là trung điểm của BC

Xét tứ giác BHCK có 

Q là trung điểm của BC

Q là trung điểm của HK

Do đó: BHCK là hình bình hành

23 tháng 12 2020

a) Xét tứ giác BHCK có 

M là trung điểm của đường chéo BC(gt)

M là trung điểm của đường chéo HK(H và K đối xứng nhau qua M)

Do đó: BHCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b) Ta có: BHCK là hình bình hành(cmt)

nên BK//CH và BH//CK(Các cặp cạnh đối trong hình bình hành BHCK)

Ta có: BK//CH(cmt)

nên BK//CF

Ta có: BK//CF(cmt)

CF⊥AB(gt)

Do đó: BK⊥BA(Định lí 2 từ vuông góc tới song song)

Ta có: CK//BH(cmt)

nên CK//BE

Ta có: CK//BE(cmt)

BE⊥AC(gt)

Do đó: CK⊥AC(Định lí 2 từ vuông góc tới song song)

c) Vì H và I đối xứng nhau qua BC

nên BC là đường trung trực của HI

⇔C nằm trên đường trung trực của HI

hay CH=CI(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: BHCK là hình bình hành(cmt)

nên CH=BK(Hai cạnh đối trong hình bình hành BHCK)(2)

Từ (1) và (2) suy ra CI=BK

Gọi O là giao điểm của BC và HI

mà BC là đường trung trực của HI

nên O là trung điểm của HI

Xét ΔHIK có 

O là trung điểm của HI(cmt)

M là trung điểm của HK(H và K đối xứng nhau qua M)

Do đó: OM là đường trung bình của ΔHIK(Định nghĩa đường trung bình của tam giác)

⇒OM//IK(Định lí 2 về đường trung bình của tam giác)

hay IK//BC

Xét tứ giác BIKC có IK//BC(cmt)

nên BIKC là hình thang có hai đáy là IK và BC(Định nghĩa hình thang)

Hình thang BIKC(IK//BC) có IC=BK(cmt)

nên BIKC là hình thang cân(Dấu hiệu nhận biết hình thang cân)

20 tháng 3 2021

a) Xét tứ giác BHCK có 

M là trung điểm của đường chéo BC(gt)

M là trung điểm của đường chéo HK(H và K đối xứng nhau qua M)

Do đó: BHCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b) Ta có: BHCK là hình bình hành(cmt)

nên BK//CH và BH//CK(Các cặp cạnh đối trong hình bình hành BHCK)

Ta có: BK//CH(cmt)

nên BK//CF

Ta có: BK//CF(cmt)

CF⊥AB(gt)

Do đó: BK⊥BA(Định lí 2 từ vuông góc tới song song)

Ta có: CK//BH(cmt)

nên CK//BE

Ta có: CK//BE(cmt)

BE⊥AC(gt)

Do đó: CK⊥AC(Định lí 2 từ vuông góc tới song song)

c) Vì H và I đối xứng nhau qua BC

nên BC là đường trung trực của HI

⇔C nằm trên đường trung trực của HI

hay CH=CI(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: BHCK là hình bình hành(cmt)

nên CH=BK(Hai cạnh đối trong hình bình hành BHCK)(2)

Từ (1) và (2) suy ra CI=BK

Gọi O là giao điểm của BC và HI

mà BC là đường trung trực của HI

nên O là trung điểm của HI

Xét ΔHIK có 

O là trung điểm của HI(cmt)

M là trung điểm của HK(H và K đối xứng nhau qua M)

Do đó: OM là đường trung bình của ΔHIK(Định nghĩa đường trung bình của tam giác)

⇒OM//IK(Định lí 2 về đường trung bình của tam giác)

hay IK//BC

Xét tứ giác BIKC có IK//BC(cmt)

nên BIKC là hình thang có hai đáy là IK và BC(Định nghĩa hình thang)

Hình thang BIKC(IK//BC) có IC=BK(cmt)

nên BIKC là hình thang cân(Dấu hiệu nhận biết hình thang cân)

27 tháng 10 2020

Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, Tiếng Việt và Ngữ Văn hoặc Tiếng Anh, và KHÔNG ĐƯA các câu hỏi linh tinh gây nhiễu diễn đàn. OLM có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.

Mỗi thành viên được gửi tối đa 5 câu hỏi trong 1 ngày

22 tháng 2 2020

a) Tứ giác BHCkBHCk có 2 đường chéo BCBCHKHK cắt nhau tại trung điểm MM của mỗi đường

⇒BHCK⇒BHCK là hình bình hành.

b) BHCKBHCK là hình bình hành ⇒BK∥HC⇒BK∥HC

HC⊥ABHC⊥AB

⇒BK⊥AB⇒BK⊥AB (đpcm)

c) Do II đối xứng với HH qua BC⇒IH⊥BCBC⇒IH⊥BCHD⊥BC,D∈BCHD⊥BC,D∈BC

⇒I⇒I đối xứng với HH qua D⇒DD⇒D là trung điểm của HIHI

MM là trung điểm của HKHK

⇒DM⇒DM là đường trung bình ΔHIKΔHIK

⇒DM∥IK⇒DM∥IK

⇒BC∥IK⇒BC∥IK

⇒BCKI⇒BCKI là hình thang

ΔCHIΔCHICDCD vừa là đường cao vừa là đường trung tuyến

⇒ΔCHI⇒ΔCHI cân đỉnh CC

⇒CI=CH⇒CI=CH (*)

Mà tứ giác BHCKBHCK là hình bình hành ⇒CH=BK⇒CH=BK (**)

Từ (*) và (**) suy ra CI=BKCI=BK

Tứ giác BCKIBCKI là hình bình hành có 2 đường chéo CI=BKCI=BK

Suy ra BCIKBCIK là hình thang cân.

Tứ giác HGKCHGKCGK∥HCGK∥HC (do BHCKBHCK là hình bình hành)

⇒HGKC⇒HGKC là hình thang có đáy là GK∥HCGK∥HC

...

24 tháng 10 2021

a: Xét tứ giác BHCK có 

M là trung điểm của BC

M là trung điểm của HK

Do đó: BHCK là hình bình hành

28 tháng 11 2021

ai giúp em với ạ

 

 

20 tháng 12 2021

Xét tứ giác BHCK có

M là trung điểm của BC

M là trung điểm của HK

Do đó: BHCK là hình bình hành