K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2020

Ta có :

\(3^{15}+3^{16}+3^{17}\)

\(=3^{15}\cdot\left(1+3+3^2\right)=3^{15}\cdot13⋮13\)

\(\rightarrow3^{15}+3^{16}+3^{17}⋮13\left(đpcm\right)\)

2 tháng 9 2020

Ta có : \(3^{15}+3^{16}+3^{17}\)

\(=3^{15}\cdot\left(1+3+3^2\right)=3^{15}\cdot13⋮13\)

\(\Rightarrow3^{15}+3^{16}+3^{17}⋮13\)(đpcm)

24 tháng 1 2021

cho mik hỏi câu này nữa   a= 2+2 mũ 3 + 2 mũ 5 +.....+2 mũ 51

4 tháng 8 2023

a) \(4^{13}+4^{14}+4^{15}+4^{16}=4^{13}\left(1+4\right)+4^{14}\left(1+4\right)=4^{13}.5+4^{14}.5=5\left(4^{13}+4^{14}\right)⋮5\Rightarrow dpcm\)

c) \(2^{10}+2^{11}+2^{12}+2^{13}+2^{14}+2^{15}\)

\(=2^{10}\left(1+2+2^2\right)+2^{13}\left(1+2+2^2\right)\)

\(=2^{10}.7+2^{13}.7=7\left(2^{10}+2^{13}\right)⋮7\Rightarrow dpcm\)

Câu c bạn xem lại đê

23 tháng 12 2024

HHehe

17 tháng 9 2017

hbewjfewi

11 tháng 1 2020

Câu 3 = (5 mũ 51 - 1) : 4

9 tháng 9 2017

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

10 tháng 12 2017

Thanks bạn

28 tháng 10 2019

\(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}.33\)

Không chia hết cho 17. em xem lại đề bài nhé.

DD
16 tháng 12 2020

a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)

Các ý dưới bạn làm tương tự nhé. 

28 tháng 7 2017

b) \(n+7⋮n\)

Mà: \(n⋮n\)

\(\Rightarrow7⋮n\)

\(\Rightarrow n\inƯ\left(7\right)=1;7;-1;-7\)

Vậy giá trị n cần tìm là: n=1;-1;7;-7

\(n+11⋮n+9\)

\(\Rightarrow\left(n+9\right)+2⋮n+9\)

Do: \(n+9⋮n+9\)

\(\Rightarrow2⋮n+9\)

\(\Rightarrow n+9\inƯ\left(2\right)=\left\{1;2;-1;-2\right\}\)

Lập bảng giá trị:

n+912-1-2
n-8-7-10-11

Vậy giá trị n cần tìm là: n=-8;-7;-10;-11

\(2n+13⋮n+3\)

\(\Rightarrow2\left(n+3\right)+7⋮n+3\)

Vì: \(2\left(n+3\right)⋮n+3\)

\(\Rightarrow7⋮n+3\)

\(\Rightarrow n+3\inƯ\left(7\right)=\left\{1;7;-1;-7\right\}\)

Lập bảng giá trị:

n+317-1-7
n-24-4-10

Vậy giá trị n cần tìm là: n=-2;4;-4;-10