Cho x=\(\sqrt[3]{46\sqrt{5}-61}+\sqrt{69-28\sqrt{5}}\) Tính C=\(\left(x^2-7x+7\right)^{2020}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a=\sqrt{2}+\sqrt{7-2\sqrt{5}-1}+1\)
\(=\sqrt{2}+\sqrt{5}-1+1=\sqrt{2}+\sqrt{5}\)
f(x)=x^4(x+2)-14x^2(x+2)+9(x+2)+1
=(x+2)(x^4-14x^2+9)+1
\(=\left(\sqrt{2}+\sqrt{5}+2\right)\left[\left(7+2\sqrt{10}\right)^2-14\left(7+2\sqrt{10}\right)+1\right]\)+1
\(=\left(\sqrt{2}+\sqrt{5}+2\right)\left(89+28\sqrt{10}-84-28\sqrt{10}+1\right)\)+1
=6(căn 2+căn 5+1)+1
\(a.\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}+\dfrac{x-y}{\sqrt{x}-\sqrt{y}}=\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}+\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)}=\sqrt{x}-\sqrt{y}+\sqrt{x}+\sqrt{y}=2\sqrt{x}\)
\(b.\sqrt{\left(\sqrt{5}-1\right)\sqrt{13-\sqrt{49-2.7.2\sqrt{5}+20}}}=\sqrt{\left(\sqrt{5}-1\right)\sqrt{5+2\sqrt{5}+1}}=\sqrt{\left(\sqrt{5}-1\right)\left(\sqrt{5+1}\right)}=\sqrt{5}-1\)
\(c.\dfrac{\sqrt{3+\sqrt{5}}\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{10}+\sqrt{2}\right)\left(3-\sqrt{5}\right)}{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}=\dfrac{\sqrt{2}.\sqrt{5+2\sqrt{5}+1}\left(\sqrt{3}+1\right)\left(\sqrt{5}+1\right)\left(3-\sqrt{5}\right)}{2\sqrt{3+\sqrt{5-\sqrt{12+2.2\sqrt{3}+1}}}}=\dfrac{\sqrt{2}\left(\sqrt{5}+1\right)^2\left(\sqrt{3}+1\right)\left(3-\sqrt{5}\right)}{2\sqrt{3+\sqrt{3-2\sqrt{3}+1}}}=\dfrac{2\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)\left(\sqrt{3}+1\right)}{\sqrt{3+2\sqrt{3}+1}}=2\left(9-5\right)=2.4=8\)
Câu a
\(\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}+\dfrac{x-y}{\sqrt{x}-\sqrt{y}}\\ =\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}\sqrt{x}+\sqrt{y}\\ =\dfrac{x\sqrt{y}-y\sqrt{x}+\sqrt{x^2y}+\sqrt{xy^2}}{\sqrt{xy}}\\ =\dfrac{x\sqrt{y}-y\sqrt{x}+x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}\\ =\dfrac{2x\sqrt{y}}{\sqrt{xy}}=\dfrac{2x}{\sqrt{x}}=2\sqrt{x}\)
bài 1 : a) ta có : \(a=\sqrt{2}+\sqrt{7\sqrt[3]{61+46\sqrt{5}}}+1=\sqrt{2}+\sqrt{7\sqrt[3]{\left(1+2\sqrt{5}\right)^3}}+1\)
\(=\sqrt{2}+\sqrt{7+14\sqrt{5}}+1\)
ta có : \(a^4-14a^2+9=0\Leftrightarrow\left(a^2\right)-14a^2+9=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a^2=7+2\sqrt{10}\\a^2=7-2\sqrt{10}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a=89+28\sqrt{10}\\a=89-28\sqrt{10}\end{matrix}\right.\)
\(\Rightarrow\) đề sai
sữa đề rồi mk sẽ lm .
bài 2 : a) ta có : \(a=\dfrac{\sqrt[3]{7+5\sqrt{2}}}{\sqrt{4+2\sqrt{3}}-\sqrt{3}}=\dfrac{\sqrt[3]{\left(\sqrt{2}+1\right)^3}}{\sqrt{\left(\sqrt{3}+1\right)^2}-3}=\sqrt{2}+1\)
+) ta có phương trình bật nhất thì chắc chắn không được .
+) phương trình bậc 2 : số liên hợp có tổng nguyên của nó là : \(1-\sqrt{2}\)
\(\Rightarrow\) \(\left(1-\sqrt{2}\right)\left(1+\sqrt{2}\right)=1-2=-1\) và \(1-\sqrt{2}+1+\sqrt{2}=2\)
theo vi ét đảo \(\Rightarrow\) \(1+\sqrt{2}\) và \(1-\sqrt{2}\) là nghiệm của \(X^2-2X-1=0\)
b) ta có : \(3x^6+4x^5-7x^4+6x^3+6x^2+x-53\sqrt{2}\)
\(=3x^6-6x^5-3x^4+10x^5-20x^4-10x^3+16x^4-32x^3-16x^2+48x^3-96x^2-48x+118x^2+49x+58\sqrt{2}\)
\(=3x^4\left(x^2-2x-1\right)+10x^3\left(x^2-2x-1\right)+16x^2\left(x^2-2x-1\right)+48x\left(x^2-2x-1\right)+118x^2+49x+58\sqrt{2}\)
\(=118a^2+49a+58\sqrt{2}\)
\(=118\left(1+\sqrt{2}\right)^2+49\left(1+\sqrt{2}\right)+58\sqrt{2}\)
\(=118\left(3+2\sqrt{2}\right)+49+49\sqrt{2}+58\sqrt{2}\)
\(=403+343\sqrt{2}\)
Hãy tích cho tui đi
vì câu này dễ mặc dù tui ko biết làm
Yên tâm khi bạn tích cho tui
Tui sẽ ko tích lại bạn đâu
THANKS
( x +1 ) ( x + 4 ) = 5 căn ( x^2 + 5x +28 ) (1)
= ( x + 1 ) ( x + 4 ) = 5 căn [ (x^2 + 5x + 4) + 24 ]
= ( x + 1 ) ( x + 4 ) = 5 căn [ ( x + 1 ) ( x + 4 ) + 24 ]
Đặt a = ( x + 1 ) ( x + 4 )
(1) <=> a = 5 căn ( a + 24 )
<=> a^2 = 25 ( a + 24 )
<=> a^2 - 25a - 600 = 0
<=> a1 = 40
a2 = -15
với a = 40 ta có:
( x + 1 ) ( x + 4 ) = 40
<=> x^2 + 5x + 4 = 40
<=> x^2 + 5x - 36 = 0
<=> x = 4 và x = - 9
với a = -15, ta có:
( x + 1 ) ( x + 4 ) = -15
<=> x^2 + 5x + 4 = -15
<=> x^2 + 5x + 19 = 0
delta < 0 => pt vô nghiệm
Vậy s = { -9; 4}
a.
ĐKXĐ: \(x\ge-5\)
\(\Leftrightarrow\left(x^2-5x+6\right)\left(\sqrt{x+5}+4\right)=\left(3x+5\right)\left(x^2-5x+6\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x+6=0\\\sqrt{x+5}+4=3x+5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\\\sqrt{x+5}=3x+1\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{1}{3}\\x+5=9x^2+6x+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{1}{3}\\9x^2+5x-4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\left(loại\right)\\x=\dfrac{4}{9}\end{matrix}\right.\)
b. Bạn coi lại đề, pt này nghiệm rất xấu
c.
ĐKXĐ: \(1\le x\le7\)
\(\Leftrightarrow x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{\left(x-1\right)\left(7-x\right)}=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{7-x}\right)\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{7-x}\\\sqrt{x-1}=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)
Bài 1:
a. Ta có \(\sqrt{\dfrac{2}{x^2}}=\dfrac{\sqrt{2}}{\left|x\right|}=\dfrac{\sqrt{2}}{x}\) ,để biểu thức có nghĩa thì \(x>0\)
b. Để biểu thức \(\sqrt{\dfrac{-3}{3x+5}}\) có nghĩa thì \(\dfrac{-3}{3x+5}\ge0\)
mà \(-3< 0\Rightarrow3x+5< 0\) \(\Rightarrow x< \dfrac{-5}{3}\)
Bài 2:
a. \(\dfrac{2+\sqrt{2}}{1+\sqrt{2}}=\dfrac{\left(2+\sqrt{2}\right)\left(1-\sqrt{2}\right)}{1-2}=\dfrac{-\sqrt{2}}{-1}=\sqrt{2}\)
b. \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)
\(=14-14\sqrt{2}+7+14\sqrt{2}\)
\(=21\)
c. \(\left(\sqrt{14}-3\sqrt{2}\right)^2+6\sqrt{28}\)
\(=14-6\sqrt{28}+18+6\sqrt{28}\)
\(=32\)
ta có : \(a=\sqrt{2}+\sqrt{7-\sqrt[3]{61+46\sqrt{5}}}-1\)
\(=\sqrt{2}+\sqrt{7-\sqrt[3]{\left(1+2\sqrt{5}\right)^3}}-1=\sqrt{2}+\sqrt{7-1-2\sqrt{5}}-1\)
\(=\sqrt{2}+\sqrt{\left(\sqrt{5}-1\right)^2}-1=\sqrt{2}+\sqrt{5}-1-1\)
\(=\sqrt{2}+\sqrt{5}-2\)
thế vào máy \(\Rightarrow\) đề sai .