Cho tam giác ABC cân tại A đường cao cạnh bên bằng h góc ở đáy bằng \(\alpha\). CMR:
SABC=\(\frac{h^2}{4sin\alpha.cos\alpha}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình không có bút ở đây nên gợi ý cho bạn xíu xíu nhé.
Lấy M đối xứng với C qua A => MC = 2 AC = 2 AB
=> MBA vuông tại B
Kẻ BH vuông góc AC tại H => BH = h
Ta có sin a . cos a = BH . HC / BC^2 = h . HC / BC^2
=> h^2 / 4 sin a cos a = h.BC^2 / 4HC
Ta phải chứng minh S ABC = h^2 / 4 sin a cos a
<=> BH .AC /2 = h.BC^2 / 4HC
<=> 2 AC .HC= BC^2
<=> CM . HC = BC^2 (hệ thức lượng)
Gọi \(h_a;h_b\)là đường cao ứng với cạnh BC và AC.
\(\frac{h_b^2}{\sin\alpha.\cos\alpha}=\frac{\left(\frac{h_b}{\sin\alpha}\right)^2}{\frac{\cos\alpha}{\sin\alpha}}=\frac{\left(\frac{BC\sin\alpha}{\sin\alpha}\right)^2}{\cot\alpha}=\frac{BC}{\cot\alpha}.BC=\frac{2h_a\cot\alpha}{\cot\alpha}.BC\)
\(=2h_a.BC=4.\frac{1}{2}h_a.BC=4S_{ABC}\)
Gọi tam giác đó là ABC cân tại A . Từ A kẻ AH vuông góc với BC
Khi đó \(AH=sin\alpha.h\); \(BC=2BH=2.cos\alpha.h\)
\(\Rightarrow S_{ABC}=\frac{1}{2}BC.AH=\frac{1}{2}.2cos\alpha.h.sin\alpha.h=h^2.cos\alpha.sin\alpha\)
ta có AB^2=BC^2 (tam giác ABC đều)
=>2.AH.AB^2=2.AH.BC^2
=>(AH.AB^2)/(2BC)=(AH.BC)/(2)
=>AH^2.(AB^2/(4.AH.BH))=Sabc
=>AH^2/((4.AH.BH)/AB^2)=Sabc
=>AH^2/(4 AH/AB.BH/AB)=Sabc
=>AH^2/(4.sinx.cosx)=Sabc
Vậy \(Sabc=\frac{h^2}{4.sinx.cosx}\)
Điều cần CM chỉ xảy ra khi tam giác ABC đều thôi.Cho mình sửa lại đề bài nha.
Ta có: \(\frac{h^2}{4\sin x\cos x}=\frac{h^2}{4.\frac{h}{AB}.\frac{BH}{AB}}=\frac{AB^2.h}{4BH}=\frac{BC^2.h}{2BC}=\frac{1}{2}.BC.h=S_{ABC}\)