Giúp mình với ạaa
Giải pt:
tan4x + tanx = 2tan3x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(tan\left(\dfrac{x}{2}\right)=\sqrt{3}\)
\(\Leftrightarrow\dfrac{x}{2}=\dfrac{\pi}{3}+k\pi\)
\(\Leftrightarrow x=\dfrac{2\pi}{3}+k2\pi\) (\(k\in Z\))
\(tanx=-tan\dfrac{\pi}{5}\)
\(\Leftrightarrow tanx=tan\left(-\dfrac{\pi}{5}\right)\)
\(\Leftrightarrow x=-\dfrac{\pi}{5}+k\pi\)
Mình quên mất, nó nằm trong khoảng (π/2; π) nha, mình xin lỗi
\(tan2x=tanx\)
\(\Rightarrow2x=x+k\pi\)
\(\Rightarrow x=k\pi\)
a: sinx=sin(2x+45 độ)
=>x=2x+45 độ+k*360 độ hoặc x=-2x+135 độ+k*360 độ
=>-x=45 độ+k*360 độ hoặc 3x=135 độ+k*360 độ
=>x=-45 độ-k*360 độ hoặc x=45 độ+k*120 độ
b: cosx(x-15 độ)-căn 3=0
=>cos(x-15 độ)=căn 3>1
=>PTVN
c: 3*cos(x-pi/3)=căn 7
=>cos(x-pi/3)=căn 7/3
=>x-pi/3=arccos(căn 7/3)+k2pi hoặc x-pi/3=-arccos(căn 7/3)+k2pi
=>x=arccos(căn 7/3)+pi/3+k2pi hoặc x=-arccos(căn 7/3)+pi/3+k2pi
\(n_{O_2}=\dfrac{1,6}{32}=0,05\left(mol\right)=>n_A=0,05\left(mol\right)\)
=> \(M_A=\dfrac{3}{0,05}=60\left(g/mol\right)\)
=> D
C
\(SO_2+H_2O⇌H_2SO_3\)
\(K_2O+H_2O\rightarrow2KOH\)
\(BaO+H_2O\rightarrow Ba\left(OH\right)_2\)
\(SO_3+H_2O\rightarrow H_2SO_4\)
ĐKXĐ: ...
\(\Leftrightarrow\frac{sin4x}{cos4x}+\frac{sinx}{cosx}=\frac{2sin3x}{cos3x}\Leftrightarrow\frac{sin4x.cosx+cos4x.sinx}{cosx.cos4x}=\frac{2sin3x}{cos3x}\)
\(\Leftrightarrow sin5x.cos3x=2cosx.sin3x.cos4x\)
\(\Leftrightarrow\frac{1}{2}sin8x+\frac{1}{2}sin2x=\left(sin4x+sin2x\right)cos4x\)
\(\Leftrightarrow\frac{1}{2}sin8x+\frac{1}{2}sin2x=sin4x.cos4x+sin2x.cos4x\)
\(\Leftrightarrow\frac{1}{2}sin8x+\frac{1}{2}sin2x=\frac{1}{2}sin8x+sin2x.cos4x\)
\(\Leftrightarrow sin2x=2sin2x.cos4x\)
\(\Leftrightarrow sin2x\left(2cos4x-1\right)=0\)
Chưa học chứng minh 3 điểm thẳng hàng nên thắc mắc :D