Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(tan2x=tanx\)
\(\Rightarrow2x=x+k\pi\)
\(\Rightarrow x=k\pi\)
tan3x.tanx = 1
⇔tan3x = cotx
⇔\(tan3x=tan\left(\dfrac{\Pi}{2}-x\right)\)
\(tan\left(\dfrac{x}{2}\right)=\sqrt{3}\)
\(\Leftrightarrow\dfrac{x}{2}=\dfrac{\pi}{3}+k\pi\)
\(\Leftrightarrow x=\dfrac{2\pi}{3}+k2\pi\) (\(k\in Z\))
b/ ĐKXĐ: \(cosx\ne0\)
\(\Leftrightarrow\left(1-\frac{sinx}{cosx}\right)\left(1+sinx\right)=1+\frac{sinx}{cosx}\)
\(\Leftrightarrow\left(cosx-sinx\right)\left(1+sinx\right)=sinx+cosx\)
\(\Leftrightarrow cosx+sinx.cosx-sinx-sin^2x=sinx+cosx\)
\(\Leftrightarrow sin^2x+2sinx-sinx.cosx=0\)
\(\Leftrightarrow sinx\left(sinx-cosx+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\Rightarrow x=k\pi\\sinx-cosx=-2\left(1\right)\end{matrix}\right.\)
Xét \(\left(1\right)\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=-2\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=-\sqrt{2}< -1\) (vô nghiệm)
a/ ĐKXĐ: \(sin4x\ne0\)
\(\frac{sinx}{cosx}+\frac{cos2x}{sin2x}=\frac{2cos4x}{sin4x}\)
\(\Leftrightarrow2sin^2x.cos2x+2cos^22x=2cos4x\)
\(\Leftrightarrow\left(1-cos2x\right)cos2x+2cos^22x=4cos^22x-2\)
\(\Leftrightarrow3cos^22x-cos2x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=1\left(l\right)\\cos2x=-\frac{2}{3}\end{matrix}\right.\)
\(\Leftrightarrow2x=\pm arccos\left(-\frac{2}{3}\right)+k2\pi\)
\(\Leftrightarrow x=\pm\frac{1}{2}arccos\left(-\frac{2}{3}\right)+k\pi\)
tanx = 1-cos2x (ĐK x\(\ne\dfrac{\pi}{2}+k\pi\))
\(\Leftrightarrow\dfrac{sinx}{cosx}=2sin^2x\)
\(\Leftrightarrow sinx=2sin^2x\)
\(\Leftrightarrow sinx\left(2sinxcosx-1\right)\)=0
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sin2x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{\pi}{4}+k\pi\end{matrix}\right.\)
ĐKXĐ: ...
\(tanx-\frac{1}{tanx}=\frac{3}{2}\)
\(\Leftrightarrow tan^2x-\frac{3}{2}tanx-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=2\\tanx=-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow...\)
ĐKXĐ: ...
\(\Leftrightarrow\frac{sin4x}{cos4x}+\frac{sinx}{cosx}=\frac{2sin3x}{cos3x}\Leftrightarrow\frac{sin4x.cosx+cos4x.sinx}{cosx.cos4x}=\frac{2sin3x}{cos3x}\)
\(\Leftrightarrow sin5x.cos3x=2cosx.sin3x.cos4x\)
\(\Leftrightarrow\frac{1}{2}sin8x+\frac{1}{2}sin2x=\left(sin4x+sin2x\right)cos4x\)
\(\Leftrightarrow\frac{1}{2}sin8x+\frac{1}{2}sin2x=sin4x.cos4x+sin2x.cos4x\)
\(\Leftrightarrow\frac{1}{2}sin8x+\frac{1}{2}sin2x=\frac{1}{2}sin8x+sin2x.cos4x\)
\(\Leftrightarrow sin2x=2sin2x.cos4x\)
\(\Leftrightarrow sin2x\left(2cos4x-1\right)=0\)
Chưa học chứng minh 3 điểm thẳng hàng nên thắc mắc :D