( 2x - 1 )2008 + ( y + 3x )2008 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì mọi hạng tử trong đa thức đều lớn hơn hoặc bằng 0 nên ta xét 3 trường hợp:
(+) \(\left(2x-10\right)^{2008}=0\) \(\Rightarrow\) \(2x-1=0\)
\(\Rightarrow x=\frac{1}{2}\)
(+) \(\left(y-\frac{2}{5}\right)^{2008}\) \(\Rightarrow y-\frac{2}{5}=0\)
\(\Rightarrow y=\frac{2}{5}\)
(+) \(\left|x+y+z\right|=0\) \(\Rightarrow x+y+z=0\)
\(\Rightarrow\) \(\frac{1}{2}+\frac{2}{5}+z=0\)
\(\Rightarrow\) \(\frac{7}{5}+z=0\)
\(\Rightarrow z=-\frac{7}{5}\)
Vì\(\hept{\begin{cases}\left(2x-1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y-z\right|\ge0\end{cases}}\)
=>\(\hept{\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y-z=0\end{cases}}\)=>\(\hept{\begin{cases}2x=1\\y=\frac{2}{5}\\x+y-z=0\end{cases}}\)=>\(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{2}+\frac{2}{5}=\frac{9}{10}\end{cases}}\)
KL: (x,y,z)=(\(\frac{1}{2};\frac{2}{5};\frac{9}{10}\))
Theo bài ra ta có
(2*-1)^2008>=0 với mọi x
(y-2/5)>=0 với mọi y
|x+y-z|>=0 với mọi x; y; z
=>(3 cái trên) >=0 với mọi x y z
Với (đề bài)
<=>2x-1 mũ 2008=0
y-2/5=0
x+y-z=0
=>x=1/2;y=2/5;z=x+y=1/2+2/5=9/10
R kết luận
>= là lớn hơn hoặc bg
\(\left(2x-1\right)^2+\left(y-3\right)^8+\left(z-5\right)^{20}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-1=0\\y-3=0\\z-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=3\\z=5\end{matrix}\right.\)
Ta có :
\(\left(2x-1\right)^{2008}\ge0\forall x\)
\(\left(y+3x\right)^{2008}\ge0\forall x;y\)
\(\left(2x-1\right)^{2008}+\left(y+3x\right)^{2008}=0\)
\(\Leftrightarrow\hept{\begin{cases}2x-1=0\\y+3x=0\end{cases}}\)
\(\hept{\begin{cases}2x=1\\y+3x=0\end{cases}}\)
\(\hept{\begin{cases}x=\frac{1}{2}\\y+3\cdot\frac{1}{2}=0\end{cases}}\)
\(\hept{\begin{cases}x=\frac{1}{2}\\y+\frac{3}{2}=0\end{cases}}\)
\(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{-3}{2}\end{cases}}\)
( 2x - 1 )2008 + ( y + 3x )2008 = 0
Ta có : \(\hept{\begin{cases}\left(2x-1\right)^{2008}\\\left(y+3x\right)^{2008}\end{cases}\ge}0\forall x,y\Rightarrow\left(2x-1\right)^{2008}+\left(y+3x\right)^{2008}\ge0\forall x,y\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}2x-1=0\\y+3x=0\end{cases}}\)
+) 2x - 1 = 0 => x = 1/2
+) y + 3x = 0
=> y + 3.1/2 = 0
=> y + 3/2 = 0
=> y = -3/2
Vậy giá trị của biểu thức = 0 <=> x = 1/2 ; y = -3/2