cho M= 1/2+(1/2)^2+......+ (1/2)^99+(1/2)^100
cmr: M <1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
Sửa đề; \(Q\left(x\right)=x^{99}-100x^{98}+100x^{97}-100x^{96}\)
x=99 nên x+1=100
\(Q\left(x\right)=x^{99}-x^{98}\left(x+1\right)+x^{97}\left(x+1\right)-x^{96}\left(x+1\right)\)
\(=x^{99}-x^{99}-x^{98}+x^{98}+x^{97}-x^{97}-x^{96}\)
\(=-x^{96}=-99^{96}\)
\(\frac{1}{3}M=\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{100}}\)
\(M-\frac{1}{3}M=\left(\frac{1}{3^2}-\frac{1}{3^2}\right)+....+\left(\frac{1}{3^{99}}-\frac{1}{3^{99}}\right)+\frac{1}{3}-\frac{1}{3^{100}}\)
\(\frac{2}{3}M=\frac{1}{3}-\frac{1}{3^{100}}\)
Vậy \(M=\left(\frac{1}{3}-\frac{1}{3^{100}}\right):\frac{2}{3}=\frac{1}{2}-\frac{1}{2.3^{99}}<\frac{1}{2}\)
KL: M < 1/2 (dpcm)
Cho M=1/2*2/3..............*99/100
N=2/3*3/4*...................*100/101
CMR : M<N
Tính: M*N
CMR;M<1/10
\(\frac{M}{3}=\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{100}}\)
\(\frac{2M}{3}=M-\frac{M}{3}=\frac{1}{3}-\frac{1}{3^{100}}\)
\(2M=1-\frac{1}{3^{99}}\Rightarrow M=\frac{1}{2}-\frac{1}{2.3^{99}}<\frac{1}{2}\) (dpcm)
\(M=\frac{1}{2}+\left(\frac{1}{2}\right)^2+...+\left(\frac{1}{2}\right)^{99}+\left(\frac{1}{2}\right)^{100}\)
\(\Leftrightarrow2M=1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+...+\left(\frac{1}{2}\right)^{99}\)
\(2M-M=\left[1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+...+\left(\frac{1}{2}\right)^{99}\right]-\left[\frac{1}{2}+\left(\frac{1}{2}\right)^2+...+\left(\frac{1}{2}\right)^{100}\right]\)
\(\Leftrightarrow M=1-\left(\frac{1}{2}\right)^{100}< 1\)