![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
\(\dfrac{5}{x} - \dfrac{y}{3} =\dfrac{1}{6}\)
\(\Rightarrow\dfrac{1}{6}+\dfrac{y}{3}=\dfrac{5}{x}\)
\(\Rightarrow\dfrac{1}{6}+\dfrac{2y}{6}=\dfrac{5}{x}\)
\(\Rightarrow1+\dfrac{2y}{6}=\dfrac{5}{x}\)
\(\Rightarrow x.\left(1+2y\right)=30\)
Vì \(2y\) chẵn nên \(1+2y\) lẻ
\(\Rightarrow1+2y\in\left\{\pm1;\pm3;\pm5;\pm30\right\}\)
\(\Rightarrow x\in\left\{\pm10;\pm30;\pm6;\pm2\right\}\)
Bài 2:
\(\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{\left(2n\right)^2}< \dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+...+\dfrac{1}{\left(2n-2\right).2n}\)
\(=\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+...+\dfrac{2}{\left(2n-2\right).2n}\right).\dfrac{1}{2}\)
\(=\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{12}+...+\dfrac{1}{2n-2}-\dfrac{1}{2n}\right).\dfrac{1}{2}\)
\(=\left(\dfrac{1}{2}-\dfrac{1}{2n}\right).\dfrac{1}{2}\)
\(=\dfrac{1}{4}-\dfrac{1}{2n.2}< \dfrac{1}{4}\)
\(\Rightarrow\dfrac{1}{4^2}+\dfrac{1}{6^2}+\dfrac{1}{8^2}+...+\dfrac{1}{\left(2n\right)^2}< \dfrac{1}{4}\left(đpcm\right)\)
cho:
m = 1/2*3/4*5/6*....*99/100
n = 2/3*4/5*6/7*...*100/101
a, Chứng tỏ m<n
b,Tìm m*n
c, chứng tỏ m<1/10
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\text{1: 1+(-2)+3+(-4)+........+19+(-20)}\)
\(\text{=1-2+3-4+.....+19-20}\)
\(\text{=-1+(-1)+..........+(-1)}\)
\(\text{=-1.(20-1)+1:2}\)
\(\text{=-1.10}\)
\(=-10\)
\(\text{2: 1- 2 +3 -4+......+99 - 100}\)
\(\text{=( 1- 2) +(3 -4)+......+(99 - 100)}\)
\(\text{=-1+(-1)+.....+(-1)}\)
\(\text{=-1.(100-1)+1:2}\\ \text{=-1.50}\)
\(=-50\)
\(\text{3: 2 - 4+6 - 8+.....+48 - 50}\\ \text{=(2 - 4)+(6 - 8)+.....+(48 - 50)}\\ \text{=-2+(-2)+......+(-2)}\\ \text{=-2.(50-2):2+1}\\ \text{=-2.25}\\ =-50\)
\(\text{4: -1 + 3 - 5 +7 -.....+97 - 99}\\ \text{=-1 +(3-5)+(7-9)+.......+(97-99)}\\ \text{=-1+(-2)+(-2)+........+(-2)}\\ \text{=-1+[(-2).(99-3):2+1]}\\ \text{=-1+[(-2).49]}\\ \text{=-1+(-98)}\\ =-99\)
\(\text{5: 1 + 2 – 3 – 4 + . . . . + 97 + 98 – 99 – 100}\)
\(\text{=1−2+3−4+5−6+...+99−100}\)
\(\text{=(1−2)+(3−4)+(5−6)+...+(99−100) }\)
\(\text{=(−1)+(−1)+(−1)+...+(−1)}\)
\(\text{=(−1).50}\)
\(\text{=−50}\)
1/ 1 + (-2) + 3 + (-4) + . . . + 19 + (-20)
=(1-2)+(3-4)+..........+(19-20)
=-1+(-1)+.......+(-1)
=-1.[(20-1)+1:2]
=-1.10
=-10
2/ 1 – 2 + 3 – 4 + . . . + 99 – 100
=-1+(-1)+....+(-1)
=-1.[(100-1)+1:2]
=-1.50
=-50
3/ 2 – 4 + 6 – 8 + . . . + 48 – 50
=-2+(-2)+.......+(-2)
=-2.[(50-2):2]:2
=-2.12
=-24
=-2.