K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 8 2020

\(y=\left(sinx+1\right)\left(sinx-5\right)\)

Do \(-1\le sinx\le1\Rightarrow\left\{{}\begin{matrix}sinx+1\ge0\\sinx-5< 0\end{matrix}\right.\)

\(\Rightarrow y\le0\Rightarrow y_{max}=0\) khi \(sinx=-1\)

\(y=sin^2x-4sinx+3-8=\left(1-sinx\right)\left(3-sinx\right)-8\)

Do \(-1\le sinx\le1\Rightarrow\left\{{}\begin{matrix}1-sinx\ge0\\3-sinx>0\end{matrix}\right.\) \(\Rightarrow\left(1-sinx\right)\left(3-sinx\right)\ge0\)

\(\Rightarrow y_{min}=-8\) khi \(sinx=1\)

16 tháng 9 2020

Cưa cưa em hỏi ké phát, phương pháp chung của những dạng tìm gtnn,ln của hàm số lượng giác là biến đổi nó về dạng gì ạ? Và help me with question, pls:

Max: \(\sin^2x+\cos2x+\sin2x\)

28 tháng 10 2023

\(f'\left(x\right)=\left(sin^2x\right)'+4\cdot\left(sinx'\right)-5'\)

\(=2\cdot sinx\cdot cosx+4\cdot cosx=2cosx\left(sinx+2\right)\)

\(f'\left(x\right)=0\)

=>\(cosx\left(sinx+2\right)=0\)

=>\(cosx=0\)

=>\(x=\dfrac{\Omega}{2}+k\Omega\)

mà \(x\in\left[0;\dfrac{\Omega}{2}\right]\)

nên \(x=\dfrac{\Omega}{2}\)

\(f\left(\dfrac{\Omega}{2}\right)=sin^2\left(\dfrac{\Omega}{2}\right)+4\cdot sin\left(\dfrac{\Omega}{2}\right)-5\)

=1+4-5=0

\(f\left(0\right)=sin^20+4\cdot sin0-5=-5\)

=>Chọn D

28 tháng 10 2023

Hình như  \(\text{Ω}\) là \(\pi\) phải không ạ?

7 tháng 6 2018

Ta có : y = sin2x – 4sinx – 5= (sinx- 2)2 -  9

Vậy giá trị nhỏ nhất của hàm số là - 8

Đáp án B

19 tháng 10 2018

19 tháng 11 2019

17 tháng 3 2019

Do đó giá trị nhỏ nhất và giá trị nhỏ nhất của hàm số đã cho là 4 2 - 1  và 7

Đáp án D

24 tháng 5 2018

Đáp án A

25 tháng 3 2019

 Chọn C.

Khi đó, bài toán trở thành tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số

trên đoạn [0;1]

 

26 tháng 8 2018

Đáp án B

Ta có y = 4 sin x − 3 cos x = 5 4 5 sinx − 3 5 cos x = 5 sin x − α  với   sin α = 3 5 cos α = 4 5

Ta có   − 1 ≤ sin x − α ≤ 1 ⇒ − 5 ≤ 5 sin x − α ≤ 5 ⇒ M = 5 m = − 5