Cho HBH ABCD có đường chéo AC lớn hơn đường chéo BD. Gọi E, F lần lượt là hình chiếu của B và D xuống đường thẳng AC. Gọi H và K lần lượt là hình chiếu của C xuống đường thẳng AB và AD.
a) CMR : AF.AC=AK.AD
b) Tứ giác BEDF là hình gì ? vì sao?
c) CMR : AB.AH+AD.AK=AC^2
nhờ các bn vẽ hình nha , cảm ơn
a/ Xét tg vuông ADF và tg vuông ACK có ^CAK chung
=> tg ADF đồng dạng với tg ACK \(\Rightarrow\frac{AF}{AK}=\frac{AD}{AC}\Rightarrow AF.AC=AK.AD\)
b/
BE vuông góc AC; DF vuông góc với AC => BE//DF (Hai đường thẳng cùng vuông góc với 1 dt thứ 3 thì chúng // với nhau) (1)
Xét tg vuông ABE và tg vuông CDF có
AB=CD (cạnh đối hbh)
AB//CD => ^BAE=^DCF (góc so le trong
=> tg ABE = tg CDF => BE=DF (2)
Từ (1) và (2) => BEDF là hình bình hành (Tứ giác có 1 cặp cạnh đối // và = nhau là hình bình hành)
Bạn tự vẽ hình nha, mình ko bt vẽ hình trên OLM đâu.
a) Xét 2 tam giác AFD và tam giác AKC có:
*Chung góc DAF
*Góc AFD = Góc AKC = 90 độ (gt)
=> Tam giác AFD đồng dạng tam giác AKC (gg)
=> \(\frac{AF}{AD}=\frac{AK}{AC}\)
=> \(AF.AC=AK.AD\) (ĐPCM)
b) Do ABCD là hình bình hành (gt)
=> Góc DAF = Góc BCE (2 góc SLT)
Xét tam giác ADF và tam giác CBE có:
+ DAF = BCE (cmt)
+ AFD = BEC = 90 độ (gt)
=> Tam giác ADF đồng dạng tam giác BCE (gg)
=> góc ADF = góc CBE
Xét tam giác ADF và tam giác CBE có:
*AD=BC (Do ABCD là hình bình hành)
*DAF = BCE (cmt)
*ADF = CBE (cmt)
=> Tam giác ADF = Tam giác CBE (gcg)
=> \(DF=BE\) (1)
Có: DF và BE cùng vuông góc với AC (gt)
=> DF // BE (2)
TỪ (1) VÀ (2) => Tứ giác BEDF là hình bình hành.