giúp em với
chứng minh rằng : \(\frac{51.51.52.....100}{2^{50}}=1.3.5.7....99\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.3.....99=\frac{1.3....99.2.4.6....100}{2.4.6....100}\)
\(=\frac{1.2.3.4.5......99.100}{2^{50}.\left(1.2.3....50\right)}\)
\(=\frac{51.52.53...100}{2.2.2...2}\)
\(=\frac{51}{2}.\frac{52}{2}....\frac{100}{2}\)
\(\Rightarrow1.3...99=\frac{51}{2}.\frac{52}{2}....\frac{100}{2}\left(đpcm\right)\)
Ta có :\(\frac{51}{2}\) . \(\frac{52}{2}\) .... \(\frac{100}{2}\)
=\(\frac{51.52....100}{2.2....2}\)
=\(\frac{51.52....100}{2.2....2}\) . \(\frac{2.4.6....100}{2.4.6....100}\)
=\(\frac{51.52....100.2.4.6...100}{2.4.6...100.2.2...2}\)
=\(\frac{1.2.3.4...100}{2.4.6...100}\)
=\(\frac{\left[1.3.5....99\right].\left[2.4.6...100\right]}{2.4.6...100}\)
=1.3.5...99[đpcm]
\(\Rightarrow\)C=\(\frac{\text{1.2.3.4...99.100}}{\text{2.4.6....100}}\)
\(\Rightarrow\)C=\(\frac{\text{1.2.3...99.100}}{(2.2....2)(1.2.3.4.5....50)}\) [50 chữ số 2]
\(\Rightarrow\)C=\(\frac{51}{2}.\frac{52}{2}...\frac{100}{2}\)=D
vậy C=D
Ta có \(1.3.5...99=\frac{1.2.3.4.5...100}{2.4.6...100}=\frac{1.2.3.4.5....100}{2^{50}.1.2.3.4...50}=\frac{51.52.53...100}{2^{50}}\left(\text{đpcm}\right)\)
Ta có : \(1.3.5....99=\frac{1.2.3.4.5....100}{2.4.6...100}=\frac{1.2.3.4.5....1000}{2^{50}.1.2.3.4....50}=\frac{51.51.53....100}{2^{50}}\)( đpcm )
Ta có:
\(D=\frac{51}{2}\cdot\frac{52}{2}\cdot\frac{53}{2}....\frac{100}{2}\)
\(=\frac{51.52.53....100}{2^{50}}\)
\(=\frac{\left(51.52.53....100\right)\left(1.2.3.....50\right)}{2^{50}\left(1.2.3.....50\right)}\)
\(=\frac{1.2.3.....100}{\left(2.1\right)\left(2.2\right)\left(2.3\right).......\left(2.50\right)}\)
\(=\frac{\left(1.3.5....99\right)\left(2.4.6....100\right)}{2.4.6....100}\)
= 1.3.5.....99 = C
Vậy C = D
Tham khảo nha bạn :
Câu hỏi của Trần Minh Hưng - Toán lớp | Học trực tuyến
Đặt \(A=\frac{1}{3}-\frac{2}{3^2}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow3A=1-\frac{2}{3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
\(4A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
Đặt \(B=1+\frac{1}{3}+...+\frac{1}{3^{99}}\)
\(\Rightarrow3B=3+1+...+\frac{3}{3^{98}}\)
\(2B=3-\frac{1}{3^{99}}\)
\(B=\frac{3}{2}-\frac{1}{3^{99}.2}\)
Thay B vào 4A ta có:
\(4A=\frac{3}{2}-\frac{1}{3^{99}.2}\)
\(A=\frac{3}{2.4}-\frac{1}{3^{99}.2.4}\)
\(A=\frac{3}{8}-\frac{1}{3^{99}.8}\)
Vì \(\frac{3}{8}>\frac{3}{16}\)
\(\Rightarrow\frac{3}{8}-\frac{1}{3^{99}.8}< \frac{3}{16}\)
Vậy \(A< \frac{3}{16}\)
Ta có :
\(C=1.3.5.7...99\Rightarrow C=\frac{1.3.5.7..99}{2.4.6.8..98}\Rightarrow C=\frac{1.3.5.7..9}{\left(2.2...2\right)\left(1.2.3..50\right)}\)( có 50 chữ số 2 )
\(\Rightarrow C=\frac{51}{2}.\frac{52}{2}.\frac{53}{2}...\frac{100}{2}\)
\(\Rightarrow C=D\)
bạn chỉ càn tra google cái dòng siêu to khổng lồ đó là đc
https://hoc247.net/hoi-dap/toan-6/chung-minh-1-3-5-7-99-51-2-52-2-53-2-100-2-faq210580.html